Принцип работы гидротрансформатора

Устройство

Конструкция гидротрансформатора включает в себя всего несколько элементов:

  • Насосное колесо;
  • Турбинное колесо;
  • Статор, он же – реактор;
  • Корпус;
  • Механизм блокировки;

Монтируется гидротрансформатор на маховике двигателя, но одна из составляющих его имеет жесткую связь с валом коробки передач.

Если провести аналогию этого типа передачи с обычным сцеплением фрикционного типа, то насосное колесо выполняет роль ведущего диска (жестко соединено с коленчатым валом мотора), а турбинное – ведомого (прикрепленного к валу КПП). Вот только физического контакта между этими колесами нет.

Примечательно, что даже расположение этих колес идентично фрикционному сцеплению – турбинное колесо располагается между маховиком и насосным колесом.

Все составные части гидротрансформатора заключены в герметичный корпус, заполненный специальной рабочей жидкостью — маслом ATF. За счет своей формы этот элемент трансмиссии получил народное название «бублик».

Суть работы гидротрансформатора очень проста. На колесах устройства имеются лопасти, которые перенаправляют жидкость в определенном направлении.

Вращаясь вместе с маховиком, насосное колесо создает поток жидкости и направляет его на лопасти турбины, тем самым и обеспечивается передача усилия.

Если бы конструкция включала только эти два колеса, то гидротрансформатор не отличался бы от гидромуфты, у которой вращающий момент на обеих составляющих практически одинаков.

Но в задачу гидротрансформатора входит не только передача усилия, а и его изменение.

Так, при старте необходимо обеспечить увеличение крутящего момента на ведомом колесе (при начале движения), а во время равномерного движения – исключить так называемое «проскальзывание».

Для выполнения этих функций в конструкции предусмотрены реактор и механизм блокировки.

Реактор представляет собой еще одно лопастное колесо, но значительно меньшего диаметра и располагается оно между турбиной и насосом, с последним реактор связан посредством обгонной муфты.

В задачу этого элемента входит увеличение скорости потока жидкости, что и приводит к повышению крутящего момента.

Работает реактор так: при возникновении большой разницы между основными колесами гидротрансформатора, обгонная муфта блокирует реактор, не давая ему вращаться (из-за этого еще одно название составляющей – статор).

При этом его лопасти, имеющие специальную форму, увеличивают скорость движения потока жидкости, попадающего на него после прохождения турбинного колеса, и направляют его снова на насос.

Таким образом реактор значительно повышает крутящий момент, необходимый для создания достаточного усилия при начале движения.

При равномерном движении гидротрансформатор блокируются, то есть в нем появляется жесткая связь, и делает это используемый в конструкции механизм блокировки.

Ранее в АКПП эта составляющая срабатывала только на повышенных скоростях движения. Сейчас же, используемые электронные системы управления коробкой блокируют гидротрансформатор практически на всех ступенях.

То есть, как только крутящий момент для определенной передачи подходит к требуемым параметрам, механизм срабатывает.

При смене ступени он отключается, чтобы обеспечить плавность переключения и снова включается. Тем самым исключается вероятность «проскальзывания» гидротрансформатора, что повышает его ресурс, снижает потери усилия и уменьшает потребление топлива.

Примечательно, что механизм блокировки, по сути, представляет собой фрикционное сцепление, и работает он по тому же принципу. То есть в конструкции имеется фрикционный диск, который закреплен на турбине.

В отключенном состоянии блокировочного механизма этот диск находится в отжатом состоянии. При включении же блокировки, фрикционы прижимаются к корпусу гидротрансформатора, тем самым и достигается жесткая передача крутящего момента от мотора на КПП.

В целом, если рассмотреть функционирование гидротрансформатора, то существует три режима его работы:

  • Трансформация (включается, когда требуется повышение крутящего момента для создания большего усилия. В этом режиме работает реактор, обеспечивая повышение скорости движения потока);
  • Гидромуфта (в этом режиме реактор не задействован и вращающий момент на ведущем и ведомом колесе практически одинаков);
  • Блокировка (турбина жестко связана с корпусом для уменьшения потерь на «проскальзывание»).

Используемая для управления работой гидротрансформатора электронная система обеспечивает очень быструю смену режима его работы, подстраивая функционирование этого элемента под возникающие условия.

Виды АКПП и их отличие друг от друга

Принцип работы всех видов АКПП сводится к перемене передаточного числа, которая обеспечивает преобразование мощности двигателя. Производители современных машин устанавливают трансмиссию таким образом, чтобы потенциал можно было использовать полностью. За счёт работы коробки передач, усилие передаётся от мотора к колёсам автомобиля с самыми маленькими потерями. Достигается это за счёт отсутствия разрыва сцепления.

Работа коробки запускается сразу после пуска мотора. В движение приходит маслонасос, нагнетающий давление жидкости. Колесо гидротрансформатора раскручивается в соответствии со скоростью вращения коленвала. Реакторные и турбинные остаются неподвижными.

Водитель за счёт нажима на педаль газа переключает передачи. Двигатель при этом раскручивается, провоцируя на движение насосное колесо. От лопастей под влиянием центробежной силы моторное масло переходит к турбине, обеспечивается вращение. Жидкость в результате переходит обратно к насосному колесу.

В отдельных коробках передач, при скорости 20-60 км/ч происходит автоматическая блокировка гидротрансформатора муфтой. Автомат при этом жёстко сцепляется с мотором, потому потеря мощности не прослеживается. Интересно, что при эксплуатации в таких условиях, масло быстрее приходит в негодность из-за перегрева и износа фрикционной накладки. Крутящий момент от двигателя переходит по выходному валу в АКПП.

Автоматическая система занимает передовое место среди числа всех известных вариантов. Новые системы постоянно разрабатываются и совершенствуются. Из общих списков можно выделить вариаторные, роботизированные и классические типы.

Классическая автоматическая коробка передач

Гидротрансформаторный модуль популярен до сих пор, несмотря на наличие других, более совершенных вариантов. Такая трансмиссия используется и сейчас. Её устанавливают на авто, сходящие с конвейера.

Стандартная АКПП

Коробка автомат включает планетарный редуктор, управляющую систему и гидравлический трансформатор. Последний элемент механизма является самым значимым, отсюда и название конструкции. Модуль активно используют на легковых и грузовых транспортных средствах.

Кому подойдёт автомобиль с АКПП сказать довольно трудно. Управлять автоматом после механики бывает достаточно сложно. Многим владельцам, несмотря на видимое упрощение режима эксплуатации, бывает тяжело перестроиться.

Роботизированная

Роботизированная коробка является достойной и более современной альтернативой для классического варианта АКПП. Переключение скоростей в ней обеспечивается за счёт взаимосвязи электрических механизмов, проявляющих активность за счёт электронного блока. Главное сходство этой системы с классической – наличие сцепления в корпусе КПП.

Роботизированная АКПП

Вариатор

Это устройство плановой бесступенчатой передачи, обеспечивающее передачу крутящего момента на колёса. Такая конструкция производит уменьшенный расход топлива при условии сохранения или приумножения динамических показателей.

Вариатор

При правильном использовании, вариатор помогает бережно эксплуатировать мотор транспортного средства. Модуль бывает цепным, ремённым, тороидальным.

Отличная статья в тему: Вариатор или автомат: что лучше и надежнее, плюсы и минусы, чем отличаются коробки передач, в чем разница

DSG

DSG это тоже роботизированная система, обеспечивающая автоматическое включение первой и второй скорости, при разомкнутости сцепления. Так модуль начинает подготовку ко включению повышенной передачи. При переключении сцепление первой ступени размыкается, а второй смыкается, действие происходит и в обратном порядке.

DSG-7

Сходство с механикой в том, что синхронизаторы способны переключать скорость при блокировки шестерни. Работа муфт обеспечивается с помощью движения цилиндров. Сцепление работает за счёт гидропривода.

Многовальные коробки прямого переключения

Такие коробки передач используют в спорткарах. Например, в Koenigsegg Jesko применяют КПП с 3-мя валами, 9 передачами и 7-ю фрикционами. Автомобиль моментально может переходить в спортивный режим, так и в экономичный городской. Регулируется это при помощи кнопки: полунажатие левой кнопки снижает передачу, полное нажатие – включает спортивный режим. Если полунажать на правую – передача повысится, если нажать до конца – включится экономичный режим.

А в некоторых спортивных Mercedes есть АКПП со сцеплением, который по стиля езды похож на вышеуказанный, но имеющий совсем другие внутренние составляющие.

Трехвальная 6-ступенчатая коробка передач Mercedes-Benz C-class sport coupe

Признаки неисправности

Признаков серьезных неисправностей гидротрансформатора АКПП может быть несколько. Все они свидетельствуют о скорой поломке ГДТ и выходе из строя.

Признак. Слышен шум, напоминающий биение металлического предмета. При нагрузке он пропадает.

Проблема и решение. Износ подшипников, находящихся между турбиной и насосом. Чтобы удалить эти симптомы и устранить поломку, нужно разобрать гидротрансформатор и заменить подшипники.

Признак. Вибрация АКПП во время разгона выше 60 км/ч или движения автомобиля по ровной поверхности на большой скорости.

Проблема и решение. Загрязнения фильтрующего устройства. Потеря функциональных свойств смазывающего средства. Необходимо сделать полную замену ATF в АКПП и установить новый фильтр. Вполне возможно, что наступило масляное голодание. Необходимо проверить поддон АКПП на потеки.

Признак. Нет движения ни назад, ни вперед.

Проблема и решение. Оборвалось соединение турбины с валом АКПП. Для решения этой неисправности понадобится замена гидротрансформатора. В редких случаях можно обойтись просто заменой шлицевого соединения.

Признак. Автомобиль не может разогнаться и набрать необходимую скорость за короткое время.

Проблема и решение. Вышла из строя обгонная муфта. Необходимо разобрать гидротрансформатор и заменить ее.

Признак. Перегрев масла. АКПП дергается и пинается.

Проблема и решение. Например, при проблемах износа фрикционной накладки поршня блокировки гидротрансформаторного тормоза очень трудно заметить неправильную работу устройства. Из-за этого масло часто перегревается до 140 градусов Цельсия. Перегретая смазка вызывает уничтожает резину сальников ГДТ. Масло начинает течь.

В продолжение этой неисправности является полный износ накладки фрикциона. Ее клееная часть отрывается и путешествует по АКПП. Затем она оседает и приклеивается в неположенных местах вызывая засор. Засор мешает свободной циркуляции масла. Падает давление.

Поэтому и эксперты, и опытные механики на СТО просят автовладельцев проводить регулярное техническое обслуживание. При износе фрикциона — неисправность незаметна. Но в последствие она приводит к полной замене АКПП. Хотя на первоначальных этапах можно было обойтись только сменой накладки фрикциона.

К нечастым поломкам ГДТ относятся следующие проблемы:

  • разрушение лопастей турбины и насосного колеса. Приводит к поломке ГДТ. Требуется его полная замена. Проблема определяется только после вскрытия;
  • клин обгонной муфты;
  • разблокировка обгонной муфты;
  • перегрев с разрушением ступицы.

Перегрев трансмиссионной жидкости может вызывать быструю потерю функциональных свойств.

Признак. Запах горелой пластмассы, распространяющийся в салоне. Частая проблема на тойотах Камри 50.

Проблема и решение. Забитый радиатор является проблемой в этом случае. Рекомендуется снять и прочистить его. Заменить масло и фильтрующее устройство – обязательно.

Признак. Пинки, задержки во время переключения скоростей зимой.

Причина и решение. Этому может способствовать запуск на холодную. Чтобы избежать этих симптомов у автомата нужен прогрев АКПП зимой. При температуре ниже 0, автовладелец должен прогреть АКПП до рабочей температуры в 70 градусов по Цельсию и только потом начинать движение.

На автомобилях старого года выпуска выходит из строя сама кулиса. Она стопорится в одном положении. Здесь понадобится замена селектора и ручки переключения скоростей. Это можно сделать без снятия автоматической коробки.

Особенность Honda

Двухвальная АКПП Хонда

Уже упоминалось, что коробки Honda отличаются от всех остальных автоматов, по сути это обычная механика с гидравлическим управлением. Плюсы этих коробок — это надежность, т. к. ломаться там практически нечему, они проще в ремонте и изготовлении. Состоят такие коробки из двух и более валов с шестернями и путем включения определенной комбинации шестерней меняется передаточное число.

Одна шестерёнка в каждой паре постоянно сцеплена со своим валом, вторая связана со своим через так называемое мокрое сцепление (фрикционная муфта включения передачи), т. е. все шестерни вращаются, но одна из пары не сцеплена с валом и соответственно крутящий момент и вращение не передаются на колеса автомобиля (нейтраль). Устройство и принцип работы муфты, как и на обычных автоматах. Когда диски сжимаются, вторая шестерня сцепляется со своим валом, соответствующая передача включена.

Задняя реализуется на сцеплении одной из передач. На валу рядом с шестерней одной передачи находится реверсивная шестерня, эти две шестерни не закрепляются жёстко на валу, между ними имеется втулка с зубьями зафиксированная на этом валу, а на этой втулке кольцевая муфта с зубьями. И в зависимости в какую из сторон будет перемещена эта муфта, та шестерня и сцепляется с валом, кольцевая муфта смещается при помощи вилки с гидравлическим приводом. Реверсивная шестерня меняет направление вращения, включается задний ход.

Как устроена коробка АТ

АТ — автоматическая трансмиссия, в которой используется автоматическая коробка переключения передач (АКПП), благодаря которой упрощается управление автомобилем. Водителю не приходится переключать передачи при изменении скорости — всё происходит автоматически.

На заметку!

В Европе и США более 80% продаваемых авто оснащены АТ трансмиссией, в России – около 50%. Причем в премиум-сегменте 80% всех машин оборудованы автоматом.

Устройство коробки

Если в автомобиле имеется АТ трансмиссия, скорости переключаются в автоматическом режиме, работа которого обеспечивается гидравлическим трансформатором.

Элементы АКПП:

  • гидравлический трансформатор — осуществляет передачу усилия от двигателя к колесам;
  • планетарная передача — выполняет передачу крутящего момента к элементам АКПП;
  • фрикционная муфта — переключает передачи, получив сигнал от ЭБУ;
  • обгонная муфта — предохраняет детали АКПП и фрикционную муфту от механических повреждений;
  • соединительные механизмы — разные валы, барабаны и шестеренки.

Принцип действия

Первые АКПП появились в 30-е годы прошлого века. Конструкция современных автоматов далеко ушла от первых агрегатов, но принцип их действия почти не поменялся.

АКПП условно делится на три части:

  • гидравлическую — она отвечает за передачу крутящего момента;
  • электронную — переключает режимы и обеспечивает связь с системами автомобиля;
  • механическую — переключает скорости.

Как работает АКПП:

  1. Когда включается двигатель, в трансформатор поступает масло и давление растет. Начинается вращение кольца насоса. После того как активируется скорость, а топливо поступает через акселератор, происходит ускорение «нагнетателя».
  2. Благодаря рабочей жидкости запускается вращение. Ее поток поочередно запускает колеса — реакторное и турбинное.
  3. Колеса автомобиля благодаря вращающему моменту начинают движение. После достижения определенного уровня скорости, элементы совершают одинаковое движение. Жидкость, поступая в реактор, обеспечивает его вращение, а система работает подобно гидравлической муфте. Когда возрастает сопротивление, например, при подъеме вверх, агрегат прекращает движение.
  4. При достижении определенного уровня скорости происходит переключение передачи. ЭБУ отправляет сигнал на остановку пониженной передачи. Переключается она без потери эффективности за счет наличия масла в клапане. При уменьшении скорости передача переключается в обратном направлении.

Когда двигатель глохнет, в гидротрансформаторе пропадает давление, поэтому запустить авто «толканием» невозможно.

Достоинства и недостатки

АТ и АКПП имеют массу преимуществ, поэтому широко внедряются в современные авто. Но если бы эта система была безупречной, не стали бы выпускать АМТ.

Плюсы:

  • комфортное управление;
  • повышенная безопасность движения — водителю не приходится отвлекаться на переключение скоростей;
  • комфортность еэды — в авто с АКПП нет проблем при начале движения и остановке, как в механике;
  • снижается износ мотора.

Многие водители авто с МТ бывали в ситуации, когда они, забыв, что машина стоит на скорости, включали зажигание. В результате авто совершало «прыжок» вперед. В машине с АТ такого произойти не может.

Минусы:

  • более высокая стоимость автомобиля;
  • большой расход топлива;
  • АКПП требуется тщательный уход — нужно часто менять масло и т. п.;
  • дорогой ремонт;
  • невысокий КПД;
  • имеются особенности использования 4АТ в зимнее время;
  • если аккумулятор разрядится, авто не получится завести «с толкача».

На заметку!

Во время каждого техосмотра рекомендуется проводить калибровку АКПП, чтобы увеличить срок ее службы.

Причины неисправности

Гидротрансформатор — устройство не очень сложное, однако в процессе эксплуатации автоматической трансмиссии он изнашивается и постепенно выходит из строя. Перечислим, какие именно системы могут поломаться, и по каким причинам.

Фрикционные пары

Внутри гидротрансформатора есть так называемая блокировка, которая, по сути является элементом автоматического сцепления. Механически работает она схоже с классическим сцеплением МКПП. Соответственно, имеет место износ фрикционных дисков, их отдельных пар, либо всего комплекта. Кроме этого, элементы износа фрикционных дисков (металлическая пыль) загрязняют трансмиссионную жидкость, из-за чего могут забиться каналы, по которым проходит жидкость. Из-за этого падает давление в системе, а также страдают другие элементы автоматической трансмиссии — гидроблок, радиатор охлаждения и прочие.

Лопатки лопастей

Металлические лопатки под воздействием высоких температур и наличия в трансмиссионной жидкости абразива также со временем изнашиваются, и добавляют в масло еще больше металлической пыли. Из-за этого снижается эффективность работы гидротрансформатора, снижается общее давление жидкости в системе трансмиссии, ну а из-за грязной жидкости растет перегрев системы, изнашивается гидроблок, увеличивается нагрузка на всю систему. В самых худших случаях возможна полная поломка одной или нескольких лопастей на крыльчатке.

Разрушение сальников

Под воздействием горячей и загрязненной жидкости АТФ увеличивается нагрузка на резиновые (пластмассовые) сальники-уплотнители. Из-за этого страдает герметичность системы, и возможна утечка трансмиссионной жидкости.

Блокировка гидротрансформаторов

На старых коробках-автомат блокировка (сцепление), у которых управление им было механическое, непосредственно блокировка срабатывала реже, только на высших передачах. Поэтому ресурс таких коробок был выше, а интервал по замене трансмиссионной жидкости — больше.

На современных же машинах блокировка срабатывает, то есть, гидротрансформатор блокируется на всех передачах, а специальный клапан регулирует силу его прижатия. Так, при плавном разгоне блокировка включается частично, а при резком — она включается практически сразу. Делается это для снижения потребления топлива, а также для увеличения динамических характеристик машины.

Одна другая сторона медали в данном случае заключается в том, что в таком режиме работы значительно возрастает износ закладок блокировки. В том числе быстро изнашивается (загрязняется) трансмиссионная жидкость, в ней появляется много мусора. С увеличением пробега плавность блокировки падает, а при разгоне или при обычной езде машина начнет немного дергаться. Соответственно, масло в АКПП нужно менять примерно на 60 тысячах километров пробега, поскольку в зону риска попадает уже вся система автоматической трансмиссии.

Износ подшипников

В частности, опорных и промежуточных, между турбиной и насосом. При этом обычно слышится хруст или свист, издаваемый непосредственно упомянутыми подшипниками. Особенно хрустящие звуки слышны при наборе скорости, однако при выходе машины на стабильную скорость и нагрузку звуки обычно пропадают, если подшипники не изношены до критического состояния.

Потеря свойств трансмиссионной жидкости

Если жидкость ATF находится в системе трансмиссии уже давно, то она чернеет, густеет, в ее составе появляется много мусора, в частности, металлической крошки. Из-за этого страдает и гидротрансформатор. Особенно критична ситуация, когда жидкость не только теряет свои свойства, но и падает ее общий уровень (количество в системе). В таком режиме гидротрансформатор будет работать в критическом режиме, при критических температурах, что значительно снижает его общий ресурс.

Обрыв соединения с валом АКПП

Это критическая поломка, которая, правда, случается крайне редко. Заключается она в том, что происходит механический обрыв шлицевого соединения турбинного колеса с валом коробки-автомат. В этом случае движение автомобиля в принципе невозможно, поскольку от двигателя на АКПП крутящий момент не передается. Ремонтные работы заключаются в замене вала, восстановлении шлицевого соединения либо же полной замене гидротрансформатора в критических случаях.

Поломка обгонной муфты

Внешним признаком поломки обгонной муфты АКПП будет ухудшение динамических характеристик машины, то есть, она будет хуже разгоняться. Однако без дополнительной диагностики невозможно точно установить, что виновата в этом именно обгонная муфта.

История появления

Впоследствии модернизированные гидромуфты стали использоваться на лондонских автобусах и первых дизельных локомотивах в целях обеспечить их плавное трогание с места. А еще позже гидромуфты облегчили жизнь и водителям автомобилей. Первый серийный автомобиль с гидротрансформатором, Oldsmobile Custom 8 Cruiser, сошел с конвейера завода General Motors в 1939 году.Впервые принцип передачи крутящего момента посредством рециркуляции жидкости между двумя лопастными колесами без жесткой связи был запатентован немецким инженером Германом Феттингером в 1905 году. Устройства, работающие на основе данного принципа, получили название гидромуфта. В то время развитие судостроения требовало от конструкторов найти способ постепенной передачи крутящего момента от парового двигателя к огромным судовым винтам, находящимся в воде. При жесткой связи вода тормозила резкий ход лопастей при запуске, создавая чрезмерную обратную нагрузку на двигатель, валы и их соединения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector