Классификация, механизмы и системы двигателя, основные конструктивные параметры
Содержание:
Устройство двигателя внутреннего сгорания
Несмотря на разнообразие типов и конструкций ДВС, принцип его устройства остается практически неизменным на любой технике. Конечно, отдельные элементы конструкции могут сильно отличаться на разных двигателях, но основные узлы и компоненты очень похожи между собой.
Итак, двигатель внутреннего сгорания состоит из таких конструктивных узлов.
-
Блок цилиндров (БЦ) – «оболочка» ЦПГ и всего двигателя в целом, в том числе с рубашкой системы охлаждения.
-
Кривошипно-шатунный механизм, он же КШМ – узел, в котором происходит преобразование прямолинейного движения поршня во вращательное. Состоит из коленвала, поршней, шатунов, маховика, а также подшипников скольжения (вкладышей), на которые опирается коленвал и крепления шатунов.
-
Газораспределительный механизм (ГРМ) – это система подачи в цилиндры топливно-воздушной смеси и отвода выхлопных газов. Состоит из распредвалов, клапанов с коромыслами или штангами, ремня ГРМ, благодаря которому вся система работает синхронно с оборотами коленвала.
-
Система питания – это узел, в котором происходит подготовка топливно-воздушной смеси, которая затем подается в камеры сгорания. В зависимости от конструкции система подачи топлива может быть карбюраторной (одна форсунка на двигатель), инжекторной (форсунки установлены перед впускным клапаном каждого цилиндра), с непосредственным впрыском (форсунка установлена внутри камеры сгорания). Включает в себя топливный бак с фильтром и насосом, карбюратор (опционально), впускной коллектор, форсунки, ТНВД (в дизельных двигателях), воздухозаборника с воздушным фильтром.
-
Система смазки двигателя – обеспечивает подачу смазки в каждый из узлов трения, а также на участки, требующие дополнительного охлаждения (например, на нижнюю часть поршней). Состоит из масляного насоса, подключенного к коленвалу, системы трубок и каналов, выходящих на пары трения, масляного фильтра, масляного поддона. В зависимости от конструкции различаются двигатели с «сухим» и «мокрым» картером. У первых емкость для сбора моторного масла расположена отдельно, во вторых – непосредственно под двигателем.
-
Система зажигания – нужна для поджига топливной смеси в камере сгорания. Применяется только на бензиновых двигателях, поскольку дизтопливо воспламеняется само от сжатия. Включает в себя свечи зажигания, высоковольтные провода, катушки зажигания, а также распределитель (трамблер) на двигателях старого типа. В современных моторах система зажигания обходится без трамблера и даже без проводов: используется конструкция «катушка на свече».
-
Система охлаждения – заботится о поддержании заданной рабочей температуры двигателя. Жидкостная система охлаждения состоит из теплоносителя (охлаждающей жидкости, антифриза), рубашки охлаждения (сеть камер и каналов внутри блока цилиндров), теплообменника (радиатор охлаждения), водяного насоса и термостата.
- Электросистема – это источники энергии, необходимой для старта двигателя и поддержания его работы. К электросистеме относится аккумуляторная батарея, генератор, стартер, проводка и датчики работы двигателя.
- Выхлопная система – отводит продукты сгорания из двигателя, выполняет функцию доочистки выхлопных газов, регулирует звук работы мотора. Состоит из выпускного коллектора, катализатора и сажевого фильтра (опционально), резонатора, глушителя.
Выхлопная система
Каждая их этих частей постепенно развивается и совершенствуется в зависимости от запросов времени. Стремление к росту мощности сменилось поиском самых надежных и долговечных решений, затем на первое место вышла экономия топлива, а сегодня – забота о природе.
Общее устройство ДВС
Устройство двигателя внутреннего сгорания достаточно простое, тем, кто уже сталкивался с их ремонтом, и достаточно тяжелое тому, кто еще не имеет представление об этом агрегате. Силовой агрегат включает в свое строение несколько немаловажных систем. Рассмотрим, общее устройство двигателя:
- Систему впрыска.
- Блок цилиндров.
- Головку блока.
- Газораспределительный механизм.
- Систему смазки.
- Систему охлаждения.
- Механизм выхлопа отработанных газов.
- Электронную часть двигателя.
Все эти элементы определяют устройство и принцип работы ДВС. Далее стоит рассмотреть, из чего состоит двигатель автомобиля, а именно сам силовой агрегат в сборе:
- Коленчатый вал — вращается в самом сердце блока цилиндров. Приводит в работу поршневую систему. Он купается в масле, поэтому расположен ближе к поддону картера.
- Поршневая система (поршни, шатуны, пальцы, втулки, вкладыши, бугеля и маслосъемные кольца).
- Головка блока цилиндров (клапаны, сальники, распределительный вал и другие элементы ГРМ).
- Масляный насос — циркулирует смазочную жидкость по системе.
- Водяной насос (помпа) — обеспечивает циркуляцию охлаждающей жидкости.
- Комплект газораспределительного механизма (ремень, ролики, шкивы) — обеспечивает правильность тактности. Ни один двигатель внутреннего сгорания, принцип работы которого основан на тактах, не может без этого элемента.
- Свечи зажигания обеспечивают воспламенение смеси в камере сгорания.
- Впускной и выпускной коллектор — принцип действия их основан на впуске топливной смеси и выпуску отработанных газов.
Виды электродвигателей: классификация
Жёсткой классификации электродвигателей нет, но различать их можно по нескольким параметрам. Основные – тип питания и наличие скользящего контакта. Эти позиции можно считать ключевыми и по ним проще ориентироваться. В общем-то, видов электродвигателей не так и много – синхронные, асинхронные, постоянного тока, вентильные. Вот, пожалуй, всё. Другое дело, что в большинстве «категорий» есть достаточно вариантов, которые значительно меняют свойства и характеристики. Но с этим придётся разбираться применительно к каждой конструкции.
Электрические двигатели отличаются типом питания, устройством и назначением
Итак, рассмотрим виды электродвигателей по виду питающего напряжения. Они бывают:
- постоянного тока;
- переменного тока: однофазное питание;
- трехфазное питание;
универсальные.
Пояснений требует только универсальный тип. Такой электродвигатель может работать как от постоянного, так и от переменного напряжения. По сути, один вид – универсальный коллекторный двигатель с обмотками возбуждения. К двигателям переменного тока относятся синхронные, асинхронные. На постоянном токе работают коллекторные и вентильные.
Наиболее распространённые виды электродвигателей
По способу передачи электропитания все электродвигатели можно разделить на две группы:
- с коллектором (щёточные);
- без коллектора (бесщёточные).
Бесщёточные электродвигатели требуют меньше обслуживания, работают тише, более надёжны. К ним относятся асинхронные с короткозамкнутым ротором (работают от переменного напряжения), вентильные (питаются постоянным напряжением). Остальные имеют коллектор и щётки, через которые на обмотки катушек подаётся напряжение.
Первичные двигатели
Первыми первичными двигателями стали парус и водяное колесо. Парусом пользуются уже более 7 тысяч лет.
Водяное колесо — норию широко применяли для оросительных систем в странах Древнего мира: Египте, Китае, Индии. Водяные и ветряные колёса широко использовались в Европе в средних веках как основная энергетическая база мануфактурного производства.
Паровые машины
В середине XVII века были сделаны первые попытки перехода к машинному производству, потребовавшие создания двигателей, не зависящих от местных источников энергии (воды, ветра и прочего). Первым двигателем, в котором использовалось тепловая энергия химического топлива, стала пароатмосферная машина, изготовленная по проектам французского физика Дени Папена и английского механика Томаса Севери. Эта машина была лишена возможности непосредственно служить механическим приводом, к ней «прилагалось в комплект» водяное мельничное колесо (по-современному говоря, гидротурбина), которое вращала вода, выжимаемая паром из парового котла в резервуар водонапорной башни. Котел то подогревался паром, то охлаждался водой: машина действовала периодически.
В 1763 году русский механик Иван Иванович Ползунов изготовил по собственному проекту стационарную паровую машину непрерывного действия. В ней были сдвоены два цилиндра, поочерёдно заполнявшиеся паром, и также подающими воду на башню, но — постоянно.
К 1784 году английский механик Джеймс Уатт создал более совершенную паровую машину, названную универсальным паровым двигателем. Уатт с детства работал подручным на машине конструкции Севери. В его задачу входило постоянно переключать краны подачи пара и воды на котел. Эта однообразная работа изрядно надоела изобретателю и побудила изобрести как поршень двойного хода, так и автоматическую клапанную коробку (потом и центробежный предохранитель). В машине был предусмотрен в цилиндре жесткий поршень, по обе стороны которого поочередно подавался пар. Все происходило в автоматическом режиме и непрерывно. Поршень вращал через кривошипно—шатунную систему маховик, обеспечивающий плавность хода. Паровая машина могла теперь стать приводом различных механизмов и перестала быть привязана к водонапорной башне. Элементы, придуманные Уаттом, входили в той или иной форме во все паровые машины. Паровые машины совершенствовали и применяли для решения различных технических задач: привода станков, судов, экипажей для перевозки людей по дорогам, локомотивов на железных дорогах. К 1880 году суммарная мощность всех работавших паровых машин превысила 26 млн кВт (35 млн л. с.).
Двигатель Стирлинга
В 1816 шотландец Роберт Стирлинг предложил двигатель внешнего сгорания, называемый сейчас его именем Двигатель Стирлинга. В этом двигателе рабочее тело (воздух или иной газ) заключен в герметичный объём. Здесь осуществлен цикл по типу цикла Севери («до-Уаттовского»), но нагрев рабочего тела и его охлаждение производятся в различных объёмах машины и сквозь стенки рабочих камер. Природа нагревателя и охладителя для цикла не имеют значения, а потому он может работать даже в космосе и от любого источника тепла. КПД созданных сейчас стирлингов невелик. Теоретически он должен раза в 2 превышать КПД для ДВС, а практически — это примерно одинаковые величины. Но у стирлингов есть ряд других преимуществ, которые способствовали развитию исследований в этом направлении.
Паровая турбина
Рисунки, изображающие крыльчатое колесо, вращающееся под воздействием потока пара, известны с древних времён. Однако практические конструкции паровой турбины были созданы лишь во второй половине XIX века, благодаря развитию конструкционных материалов, позволивших достичь высоких скоростей вращения.
В 1889 году шведский инженер Карл Густав де Лаваль предложил использовать расширяющееся сопло и быстроходную турбину (до 32000 об/мин), а, независимо от него, ещё в 1884 году англичанин Чарлз Алджернон Парсонс изобрёл первую пригодную для промышленного применения реактивную турбину (более тихоходную), способную вращать судовой винт. Паровые турбины стали применять на морских судах, а с начала XX века на электростанциях. В 1960-х годах их мощность превысила 1000 МВт в одном агрегате.
Дизельный двигатель и его принцип действия
Камера сгорания мотора — это замкнутое место, полость для сжигания газообразного, либо водянистого горючего в движках внутреннего сгорания. В камере сгорания происходит изготовление и сжигание топливовоздушной консистенции.
Вместе с обеспечением рационального смесеобразования камеры сгорания изготавливаются содействовать получению больших экономических характеристик и не плохих пусковых свойств движков. Отталкиваясь от конструкции и применяемого метода смесеобразования камеры сгорания дизелей делятся на две группы:
Неразделенные камеры сгорания представляют из себя единый объем и имеют обычно ординарную форму, которая, обычно, согласуется с направлением, размерами и числом топливных факелов при впрыске. Эти камеры малогабаритны, имеют относительно малую поверхность остывания, поэтому понижаются утраты теплоты. Движки с такими камерами сгорания имеют солидные экономические характеристики и отличные пусковые свойства.
Неразделенные камеры сгорания отличаются огромным многообразием форм. В большинстве случаев они производятся в днище поршней, время от времени отчасти в днище поршня и отчасти в головке блока цилиндров, пореже — в головке.
На рисунке показаны некие конструкции камер сгорания неразделенного типа.
Рис. Камеры сгорания дизелей неразделенного типа: а — тороидальная в поршне; б — полусферическая в поршне и головке цилиндра; в — полусферическая в поршне; г — цилиндрическая в поршне; д — цилиндрическая в поршне с боковым размещением; е — округлая в поршне: ж — шаровая в поршне; з — тороидальная в поршне с горловиной; и — цилиндрическая, образованная днищами поршней и стенами цилиндра; к — вихревая в поршне; л — трапецеидальная в поршне; м — цилиндрическая в головке под выпускным клапаном
Реальная съемка в камере сгорания работающего двигателя
В камерах сгорания, приведенных на рисунке, а—д качество смесеобразования достигается только методом распыления горючего и согласования формы камер с формой факелов впрыска горючего. В данных камерах чаше всего используются форсунки с многодырчатыми распылителями и употребляются высочайшие давления впрыска. Такие камеры имеют малые поверхности остывания. Им свойственна низкая степень сжатия.
Рекомендуем: Зачем нужны загустители масла в двигатель?
Камеры сгорания, показанные на рис. е—з, имеют более развитую теплопередаюшую поверхность, что несколько усугубляет пусковые характеристики мотора. Но методом вытеснения воздуха из надпоршневого места в объем камеры в ходе сжатия удается сделать насыщенные вихревые потоки заряда, способствующими отличному смешиванию горючего с воздухом. При всем этом обеспечивается качество высшего уровня смесеобразования.
Камеры сгорания, показанные на рисунке, к—м, находят применение в многотопливных движках. Им типично наличие строго направленных потоков заряда, обеспечивающих испарение горючего и его введение в зону сгорания в определенной последовательности. Для улучшения рабочего цикла в цилиндрической камере сгорания в головке под выпускным клапаном (рис. м) употребляется высочайшая температура выпускного клапана, являющийся одной из стен камеры.
Разбитые камеры сгорания состоят из 2-ух отдельных объемов, соединяющихся друг с другом одним либо несколькими каналами. Поверхность остывания таких камер существенно не просто, чем у камер неразделенного типа. Потому по причине с большенными теплопотерями движки с разбитыми камерами сгорания имеют обычно худшие экономические и пусковые свойства и, обычно, более высочайшие степени сжатия.
Но при разбитых камерах сгорания путем использования кинетической энергии газов, перетекающих из одной полости в другую, удается обеспечить высококачественное изготовление топливно-воздушной консистенции, по причине этого достигается довольно полное сгорание горючего и устраняется дымление на выпуске.
17. Степень сжатия
Рис. Камеры сгорания дизелей разбитого типа: а — предкамера; б — вихревая камера в головке; в — вихревая камера в блоке
Уже сегодня, дросселирующее действие соединительных каналов разбитых камер позволяет существенно уменьшить «жесткость» работы мотора и понизить критические нагрузки на детали кривошипно-шатунного механизма. Некое понижение «жесткости» работы движков с разбитыми камерами сгорания может также обеспечиваться методом увеличения температуры отдельных частей камер сгорания.
Принцип работы двигателя
Изучив устройство, перейдём к рассмотрению принципа работы ДВС. Как работает двигатель внутреннего сгорания разберём на примере одноцилиндрового бензинового мотора.
Принцип работы четырехтактного двигателя
Внутри цилиндра возвратно-поступательно перемещается поршень, соединённый с коленчатым валом через шатун. Положение, в котором остаётся поршень после перемещения вверх, называется верхней мёртвой точкой ВМТ. А положение после перемещения вниз — нижней мёртвой точкой НМТ. Ход поршня между двумя крайними точками называется тактом. Рабочий цикл включает 4 последовательных такта: впуск, сжатие, рабочий ход и выпуск.
Посмотрим поэтапно, как работает 4-тактный двигатель внутреннего сгорания:
- В начале такта впуска открывается впускной клапан, а поршень перемещается от ВМТ. В это время в цилиндр всасывается горючая смесь.
- После прохода НМТ поршень поднимается вверх, сжимая рабочую смесь и остаточные газы. Все клапана закрыты. Растёт давление и температура сжатых газов. В это время свеча зажигания даёт искру для воспламенения смеси.
- Рабочая смесь горит, толкая поршень от ВМТ вниз. Клапана ещё закрыты.
- На такте выпуска открывается выпускной клапан, и поршень поднимается вверх, выталкивая отработавшие газы из цилиндра.
Принцип работы двухтактного двигателя
Кривошипно-шатунный и газораспределительный механизмы двигателя с двумя рабочими тактами отличаются от 4-тактного. Здесь вместо клапанов в определённых местах цилиндра предусмотрены отверстия — продувочные окна. Свечи зажигания установлены в головке цилиндра.
Во время первого такта поршень двигается от НМТ к ВМТ. Через впускное окно под давлением насоса поступает рабочая смесь, заполняя цилиндр. Выпускное окно открыто и выпускает остатки отработавших газов. Перемещаясь, поршень перекрывает окна. Горючая смесь сжимается. Вблизи ВМТ подаётся искра зажигания, после чего начинается второй такт.
Поршень перемещается вниз под действием давления газов. Открываются окна. Сначала выпускное, через которое выходят отработанные газы, а затем впускное, через которое снова подаётся смесь.
Порядок работы двигателя
Порядком работы двигателя называется последовательность чередования рабочих ходов по цилиндрам двигателя. Для равномерной и плавной работы двигателя рабочие ходы и другие одноименные такты должны чередоваться в определенной последовательности в его цилиндрах. При этом чередование должно происходить через равные углы поворота коленчатого вала двигателя, величина которых зависит от числа цилиндров двигателя. В четырехтактном двигателе рабочий процесс совершается за два оборота коленчатого вала, т.е. за поворот вала на 720°. Число рабочих ходов равно числу цилиндров двигателя. Их чередование для четырех-, шести- и восьмицилиндровых двигателей будет происходить соответственно через 180, 120 и 90° поворота коленчатого вала.
Порядок работы двигателя во многом зависит от типа двигателя и числа цилиндров. Так, например, у коленчатого вала рядного четырехцилиндрового двигателя,
Материал изготовления блока цилиндров и гильз цилиндров
В зависимости от рабочего объёма и других технических и эксплуатационных характеристик, назначения, существует несколько вариантов компоновки (расположения цилиндров двигателя), а также несколько материалов для изготовления блока и цилиндра.
Так как в цилиндре возникают условия переменных давлений в надпоршневой полости, внутренняя поверхность стенок цилиндров соприкасается с пламенем и горячими газами (температура которых составляет от 1500—2500 °С), такая деталь должна изготавливаться из высокопрочных материалов с большой механической прочностью. Скорость скольжения поршневых колец по стенкам цилиндров достаточно большая от 12 до 15 м/сек, поэтому внутренние стенки цилиндра должны иметь повышенную жесткость. В этом случае увеличится срок службы цилиндра (гильзы цилиндра) и деталь будет более устойчива к разным видам износа (абразивным, коррозийным и эрозийным). Если поверхность блока цилиндров износилась выше допустимых пределов (что определется методом дефектации блока цилиндров), необходимо провести ремонт блока цилиндров.
Если нет ограничений по массе двигателя, например тракторный двигатель, то блок цилиндров изготавливается из перлитного чугуна.
На транспортных двигателях, где есть ограничения по массе, применяю более легкие алюминиевые и магниевые сплавы для изготовления блока цилиндров.
Преимущества блоков цилиндров из серого чугуна:
- низкая стоимость;
- высокая технологичность литья;
- стабильность свойств материала;
- возможность ремонта трещин блока (запайкой, заваркой, эпоксидным клеем);
- высокая твёрдость и жёсткость поверхностей, устойчивость к перегреву;
Недостатки чугунов
Главный недостаток чугуна большая масса (плотность выше в 2,7 раза), и меньшая теплопроводность.
Алюминиевые сплавы более дорогие, но алюминиевые блок цилиндров имеют гораздо меньшую массу. Алюминиевые сплавы имеют ряд особенностей, которые следует учитывать при изготовлении и эксплуатации блоков цилиндров.
Главная классификация ДВС
Все существующие ДВС разделены на 3 вида:
- поршневые;
- роторные;
- газотурбинные.
В поршневых агрегатах рабочим органом является поршень. В роторных моторах используется движение ротора. В газотурбинных двигателях движение осуществляется турбиной.
В каждом из видов этих силовых установок конструктивно реализованы разные схемы преобразования тепловой энергии в полезную работу. Это принципиально отличает их друг от друга. Максимальная производительность силовых агрегатов зависит от того, каким образом преобразуется тепловая энергия. Каждый вид силовых агрегатов создан для эффективной работы в своей области применения.
Ниже подробно описаны конструкции этих агрегатов и физические процессы, происходящие в них. Отдельный раздел статьи посвящён двигателю Стирлинга. Он относится к механизмам с внешней камерой сгорания. Но принцип работы этого мотора по нескольким признакам похож на ДВС. Это часто вызывает путаницу.
Газотурбинный двигатель
При воспламенении топлива образуются газы, которые при нагреве расширяются. Этот факт всем известен из школьного курса физики. Указанный принцип положен в основу газотурбинной установки. Топливная смесь сгорает, и нагретый газ моментально расширяется, заставляя лопасти турбины вращаться. Чем больше температура газа, тем быстрее он увеличивается в объёмах. Эта зависимость определяет коэффициент полезного действия этого вида ДВС: чем выше температура газов, тем больше КПД.
Разработано два типа газотурбинных установок, отличающихся количеством рабочих валов. Агрегаты с двумя валами мощнее по сравнению с одновальными механизмами.
Газотурбинные двигатели устанавливают на машины, где необходима большая мощность силовой установки. Например, грузовые автомобили, корабли, самолёты и железнодорожные локомотивы.
Видео: Принцип работы газотурбинного двигателя
Роторный ДВС
В моторах этого вида реализован принцип вращения вала от кругового движения ротора. Ротором является треугольный поршень, который вращается в овальной камере – статоре. Ротор закреплён на валу с эксцентриситетом. При таком расположении во время вращения ротора в цилиндре создаются полости для тактов зажигания, сгорания и выпуска. За один оборот ротора происходит 3 такта работы.
Достоинством роторного ДВС является отсутствие шатунов, коленчатого вала и многих сопутствующих узлов. Инженеры подсчитали, что деталей в агрегате роторного типа намного меньше, чем в моторах других типов. Поэтому роторные моторы гораздо меньше других. Это является ещё одним их преимуществом.
В Японии, известной своими передовыми разработками в автомобилестроении, были сконструированы двигатели, имеющие несколько роторов. Например, японцы сконструировали агрегат, имеющий такую же мощность, что и шестипоршневой двигатель гоночного автомобиля. Но размеры многороторного движка при этом гораздо меньше.
На ранних моделях вазовских автомобилей в своё время устанавливались роторные моторы.
Роторные двигатели гораздо проще и эффективнее поршневых. Но по непонятной причине роторные агрегаты используются очень редко.
Видео: Принцип работы роторного двигателя
Поршневой двигатель
Это – самый распространённый тип двигателя. Рассмотрим его принципиальную схему работы.
В конструкции мотора этого вида имеется несколько цилиндров, внутри каждого из них поршни совершают возвратно-поступательные движения. В обоих концах цилиндров расположены клапаны. Открываясь, клапан пропускает порцию топливной смеси в камеру сгорания, образующуюся в цилиндре перед поршнем. В это время поршень, двигаясь вверх, сжимает смесь. В расчётный момент происходит её воспламенение. Образующиеся газы расширяются и толкают поршень в другую сторону. Несколько таких поршней закреплены на валу П-образной конструкции. Обычно такой вал называют коленчатым. За каждое движение поршня вал проворачивается на определённую величину. Цикл движения поршня от одной стороны цилиндра до другой называется тактом. Скоординированная работа поршней заставляет коленчатый вал проворачиваться на полный оборот. Такие циклы постоянно повторяются, заставляя вращаться вал с большой скоростью.
Автомобилестроители постоянно совершенствуют поршневые двигатели. Каждое усовершенствование приводит к повышению мощности двигателя. Поршневые агрегаты являются самыми надёжными из всех видов силовых установок.
Видео: Принцип работы дизельного двигателя