4 варианта двигателей
Содержание:
- КПД электрической цепи
- Энергетическая ценность солярки и бензина
- Как рассчитать мощность
- Формула работы в физике
- Мощность и КПД
- От чего зависит КПД дизельного двигателя
- Тепловой двигатель
- Цикл Карно
- Принцип работы
- Подробнее о потерях
- Гидроэлектростанция как пример вечного двигателя
- Поспите
- Другие похожие показатели
- Что такое источник тока
- Что приведет к успеху?
- Постоянные магниты как источники энергии для двигателей
- Принцип функционирования
- Коэффициент полезного действия: дизель или бензин?
- Основные параметры электродвигателя
КПД электрической цепи
Выполняя продвижения зарядов через замкнутую цепь, двухполюсник проделывает некоторую работу. Когда генератор двигает заряды по внешнему контуру цепи, то это полезная работа. Когда ИТ продвигает электрические носители по всей цепи, говорят о полной работе.
Внимание! В этой цепочке перемещения зарядов особое значение имеет КПД (коэффициент полезного действия) источника. Он равен соотношению сопротивлений внешней цепи и полному сопротивлению цепи
Обращая внимание на КПД электроцепи, нужно отметить, что он напрямую зависит от физических величин, определяющих скорость передачи или трансформации электрической энергии. Одной из таких величин является мощность Р (Вт)
Формулы мощности:
P = U * I = U2/R = I2 * R,
где
- U – напряжение на нагрузке, В;
- I – ток, А;
- R – сопротивление нагрузки, Ом.
Для разных цепей значения напряжения и сила тока различаются, следовательно, производимая ими работа будет разной
Когда предстоит оценить скорость передачи и преобразования электрического тока, то обращают внимание на Р. Она соответствует работе, проделанной за единицу времени:
P = A/∆t,
где:
- P – мощность, Вт;
- A – работа, Дж;
- ∆t – временной интервал, с.
Исходя из этой формулы, чтобы найти работу А, нужно умножить Р на время:
A=P∙∆t
Чтобы найти КПД (η) электроцепи, нужно найти отношение полезно потраченной энергии к количеству всей энергии, поданной в цепь. Формула для расчёта:
η = A/Q *100%,
где:
- А – проделанная потребителем работа, Дж;
- Q – количество энергии, взятой от источника, Дж.
Важно! КПД не может быть выше единицы. В основном он или равен ей, или меньше её
Этому причина – Закон сохранения энергии. Согласно ему, полезная совершённая работа никогда не превысит затраты энергии, необходимые для её выполнения.
Наглядно это можно объяснить на примере электрической цепи, в которую включен проводник, имеющий определённое сопротивление. При прохождении электричества через цепь часть энергии будет рассеиваться на проводнике, превращаясь в тепло и нагревая его. Потери мощности будут зависеть от величины этого сопротивления.
КПД электрической цепи
Энергетическая ценность солярки и бензина
В состав солярки входит больше тяжелых углеводородов, нежели в бензин. Меньший КПД такого мотора сравнительно с дизельным агрегатом обусловлен энергетической составляющей бензина и способом его сгорания. При сгорании равного количества бензина и солярки большее количество тепла характерно для бензина. Тепло в дизельном агрегате более полноценно преобразуется в механическую энергию. Соответственно, при сжигании равного количества топлива за определенное количество времени именно дизельный мотор выполнит больше работы.
Помимо этого, нужно учитывать особенности впрыска и условия, способствующие качественному сгоранию смеси. В дизельный агрегат топливо поступает отдельно от воздуха и впрыскивается напрямую цилиндр в конце сжатия, минуя впускной коллектор. Результатом этого процесса становится температура, более высокая, чем у бензинового мотора и максимальное сгорание топливно-воздушной смеси.
Как рассчитать мощность
Перед покупкой отопительного оборудования для обслуживания частного дома необходимо рассчитать мощность, которой бы хватило для поддержания качественной работы котла. Если у вас нет достаточного опыта и знаний, обратитесь за помощью к профессионалам, так как ошибки на этом этапе обязательно скажутся на производительности и долговечности оборудования.
При расчёте мощности газового котла следует взять во внимание такие параметры:
-
средняя температура в зимние месяцы на данной территории;
- из каких материалов построен дом;
- какие материалы использовались для утепления дома, и использовались ли вообще;
- площадь жилых помещений дома.
Вы можете воспользоваться специальными формулами для расчета мощности отопительного оборудования для частного дома.
Формула работы в физике
Для механической работы формула несложна: A = F x S. Если расшифровать, она равна приложенной силе на путь, на протяжении которого эта сила действовала. Например, мы поднимаем груз массой 15 кг на высоту 2 метра. Механическая работа по преодолению силы тяжести будет равна F x S = m x g x S. То есть, 15 x 9,8 x 2 = 294 Дж. Если речь идет о количестве теплоты, то A в этом случае равняется изменению количества теплоты. Например, на плите нагрели воду. Ее внутренняя энергия изменилась, она увеличилась на величину, равную произведению массы воды на удельную теплоемкость на количество градусов, на которое она нагрелась.
Мощность и КПД
Мощность механизма или устройства равна работе, совершаемой в единицу времени. Работа(A) измеряется в Джоулях, а время в системе Си – в секундах. Но не стоит путать понятие мощности и номинальной мощности. Если на чайнике написана мощность 1 700 Ватт, это не значит, что он передаст 1 700 Джоулей за одну секунду воде, налитой в него. Это мощность номинальная. Чтобы узнать η электрочайника, нужно узнать количество теплоты(Q), которое должно получить определенное количество воды при нагреве на энное количество градусов. Эту цифру делят на работу электрического тока, выполненную за время нагревания воды.
Величина A будет равна номинальной мощности, умноженной на время в секундах. Q будет равно объему воды, умноженному на разницу температур на удельную теплоемкость. Потом делим Q на A тока и получаем КПД электрочайника, примерно равное 80 процентам. Прогресс не стоит на месте, и КПД различных устройств повышается, в том числе бытовой техники.
Напрашивается вопрос, почему через мощность нельзя узнать КПД устройства. На упаковке с оборудованием всегда указана номинальная мощность. Она показывает, сколько энергии потребляет устройство из сети. Но в каждом конкретном случае невозможно будет предсказать, сколько конкретно потребуется энергии для нагрева даже одного литра воды.
Например, в холодной комнате часть энергии потратится на обогрев пространства. Это связано с тем, что в результате теплообмена чайник будет охлаждаться. Если, наоборот, в комнате будет жарко, чайник закипит быстрее. То есть КПД в каждом из этих случаев будет разным.
От чего зависит КПД дизельного двигателя
Если сравнивать эффективность бензинового и дизельного моторов, выяснится, что второй обладает лучшими показателями:
- замечено, что, бензиновые двигатели преобразуют только одну четвертую часть использованной энергии в механическую работу;
- в то время, как дизельные – 40% соответственно;
- при установке турбонаддува в дизеле, КПД газотурбинного двигателя возрастает до 50 и более процентов.
Конструкция и принцип работы дизелей способствуют наибольшей эффективности в сравнении с карбюраторными двигателями. Причины лучшего КПД дизельного двигателя:
- Более высокий показатель степени сжатия.
- Воспламенение топлива происходит по другому принципу.
- Корпусные детали нагреваются меньше.
- Благодаря меньшему количеству клапанов, снижены расходы энергии на преодоление сил трения.
- В конструкции дизеля отсутствуют привычные свечи, катушки зажигания, на которые требуется дополнительная энергия от электрогенератора.
- Коленчатый вал дизеля раскручивается с меньшими оборотами.
В сравнении с дизелями, электрические двигатели считаются более эффективными. Двигатель с самым большим КПД – это электрический. При создании более долговечных аккумуляторных батарей, которым не страшны морозы, автомобильная промышленность постепенно перейдет на выпуск электромобилей в больших количествах.
Тепловой двигатель
Двигатель, в котором происходит превращение внутренней энергии топлива, которое сгорает, в механическую работу.
Любой тепловой двигатель состоит из трех основных частей: нагревателя, рабочего тела (газ, жидкость и др.) и холодильника. В основе работы двигателя лежит циклический процесс (это процесс, в результате которого система возвращается в исходное состояние).
Прямой цикл теплового двигателя
Общее свойство всех циклических (или круговых) процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой – холодильником. Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты Q1 (происходит расширение) и отдает холодильнику количество теплоты Q2, когда возвращается в исходное состояние и сжимается. Полное количество теплоты Q=Q1-Q2, полученное рабочим телом за цикл, равно работе, которую выполняет рабочее тело за один цикл.
Обратный цикл холодильной машины
При обратном цикле расширение происходит при меньшем давлении, а сжатие — при большем. Поэтому работа сжатия больше, чем работа расширения, работу выполняет не рабочее тело, а внешние силы. Эта работа превращается в теплоту. Таким образом, в холодильной машине рабочее тело забирает от холодильника некоторое количество теплоты Q1 и передает нагревателю большее количество теплоты Q2.
Цикл Карно
В тепловых двигателях стремятся достигнуть наиболее полного превращения тепловой энергии в механическую. Максимальное КПД.
На рисунке изображены циклы, используемые в бензиновом карбюраторном двигателе и в дизельном двигателе. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30%, у дизельного двигателя – порядка 40 %.
Французский физик С.Карно разработал работу идеального теплового двигателя. Рабочую часть двигателя Карно можно представить себе в виде поршня в заполненном газом цилиндре. Поскольку двигатель Карно — машина чисто теоретическая, то есть идеальная, силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю. Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. Этот цикл называют циклом Карно.
участок 1-2: газ получает от нагревателя количество теплоты Q1 и изотермически расширяется при температуре T1участок 2-3: газ адиабатически расширяется, температура снижается до температуры холодильника T2участок 3-4: газ экзотермически сжимается, при этом он отдает холодильнику количество теплоты Q2участок 4-1: газ сжимается адиабатически до тех пор, пока его температура не повысится до T1.Работа, которую выполняет рабочее тело — площадь полученной фигуры 1234.
Функционирует такой двигатель следующим образом:
1. Сначала цилиндр вступает в контакт с горячим резервуаром, и идеальный газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара некое количество тепла.2. Затем цилиндр окружается идеальной теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется, и газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.3. На третьей фазе теплоизоляция снимается, и газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией, и газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара. После этого теплоизоляция удаляется и цикл повторяется вновь с первой фазы.
КПД цикла Карно не зависит от вида рабочего тела
для холодильной машины
В реальных тепловых двигателях нельзя создать условия, при которых их рабочий цикл был бы циклом Карно. Так как процессы в них происходят быстрее, чем это необходимо для изотермического процесса, и в то же время не настолько быстрые, чтоб быть адиабатическими.
Принцип работы
Пусть есть рамка, которая помещена в магнитное поле. Её можно подключить к источнику тока. При этом принять, что перемещаются носители зарядов против часовой стрелки. Для этого положительный полюс генератора нужно подключить справа, а отрицательный слева. Эта рамка может поворачиваться вокруг горизонтальной оси. Помещена она в магнитное поле линии которого направлены перпендикулярно оси вращения.
Магнетизм будет влиять на каждую сторону рамки по-разному. Чтобы определить, как будут действовать силы нужно воспользоваться правилом буравчика: если ладонь расположить таким образом, чтобы в неё входили линии магнитного потока, а пальцы совпадали с направлением тока, то отогнутый большой палец укажет направление воздействия. Таким образом, получается:
- северная сторона — сила направлена вверх (F1);
- южная сторона — вниз (F2);
- западный и восточный участок — сила не действует.
В результате рамка с током начинает поворачиваться. Но как только она изменит своё положение на 90 градусов, то сразу же замрёт. Действующие силы изменят своё положение. Это приведёт к тому, что они будут растягивать рамку. Получается, что в магнитном поле проводник стремится повернуться так, чтобы её плоскость стала перпендикулярно направлению действия поля.
Этот эффект и используется в работе электродвигателя. Изменяя направление тока, можно добиться постоянного вращения рамки. Делается это с помощью цилиндра, разрезанного на две части. Один провод рамки подключается изнутри к правому полукольцу, а другой к левому. С внешних же сторон с помощью скользящих контактов подаётся напряжение от источника тока.
При такой схеме в тот момент, когда рамка повернётся на 90 градусов, разрезы цилиндра изменят своё положение. Разогнавшись, конструкция проскочит это положение по инерции, то есть выполнит половину оборота. На её стороны опять будут действовать две противоположно направленные силы Ампера. Рамка снова начнёт разворачиваться, стремясь вращаться по часовой стрелке. Это явление будет происходить в такой системе непрерывно.
Подробнее о потерях
Если забегать вперед, то можно уверенно сказать что КПД бензинового двигателя находится в пределах от 20 до 25 %. И на это много причин. Если взять поступающее топливо и пересчитать его на проценты, то мы как бы получаем «100% энергии», которая передается двигателю, а дальше пошли потери:
1) Топливная эффективность
. Не все топливо сгорает, небольшая его часть уходит с отработанными газами, на этом уровне мы уже теряем до 25% КПД. Конечно, сейчас топливные системы улучшаются, появился инжектор, но и он далек от идеала.
2) Второе это тепловые потер
и
. Двигатель прогревает себя и множество других элементов, такие как радиаторы, свой корпус, жидкость которая в нем циркулирует. Также часть тепла уходит с выхлопными газами. На все это еще до 35% потери КПД.
3) Третье это механические потери
. НА всякого рода поршни, шатуны, кольца – все места, где есть трение. Сюда можно отнести и потери от нагрузки генератора, например чем больше электричества вырабатывает генератор, тем сильнее он тормозит вращение коленвала. Конечно, смазки также шагнули вперед, но опять же полностью трение еще никому не удалось победить – потери еще 20 %
Таким образом, в сухом остатке, КПД равняется около 20%! Конечно из бензиновых вариантов есть выделяющиеся варианты, у которых этот показатель увеличен до 25%, но их не так много.
ТО есть если ваш автомобиль расходует топлива 10 литров на 100 км, то из них всего 2 литра уйдут непосредственно на работу, а остальные это потери!
Конечно можно увеличить мощность, например за счет расточки головки, смотрим небольшое видео.
Если вспомнить формулу то получается:
Гидроэлектростанция как пример вечного двигателя
Для примера возьмем гидроэлектростанцию, где энергия вырабатывается за счет падения с большой высоты воды. Вода вращает турбину, и та производит электричество. Падение воды осуществляется под действием гравитации Земли. И хотя работа по производству электроэнергии совершается, гравитация Земли не становится слабее, то есть сила притяжения не уменьшается. Далее вода под действием солнечных лучей испаряется и снова поступает в водохранилище. На этом цикл завершается. В результате электроэнергия выработана, затраты на ее производство возобновлены.
Конечно, можно сказать, что Солнце не вечно, это так, но пару-тройку миллиардов лет оно протянет. Что касается гравитации, то она постоянно совершает работу, вытягивая влагу из атмосферы. Если сильно обобщить, то гидроэлектростанция – это двигатель, который преобразует механическую энергию в электрическую, и его КПД составляет более 100%. Это дает понять, что искать пути создания электродвигателя, КПД которого может быть более 100%, прекращать не стоит. Ведь не только гравитацию можно использовать в качестве неисчерпаемого источника энергии.
Поспите
Есть компании, в которых короткие перерывы сотрудников на сон являются устоявшейся традицией. И причины такой политики далеки от лени. Специалисты психологии из Манчестерской бизнес-школы изучали последствия такого стиля работы и считают, что кратковременный сон позволяет значительно улучшить эффективность работы. Для решения сложных задач сон также можно считать одним из способов найти решение. Во время отдыха мозг продолжает действовать. Во сне мы намного быстрее структурируем информацию и обрабатываем ее. Случаи, когда человек просыпается с готовым решением проблемы, слишком часты, чтобы сбрасывать этот метод со счетов.
Другие похожие показатели
Не все показатели, характеризующие эффективность энергетических процессов, соответствуют вышеприведённому описанию. Даже если они традиционно или ошибочно называются «коэффициент полезного действия», они могут иметь другие свойства, в частности, превышать 100 %.
КПД котлов
КПД котлов на традиционно рассчитывается по низшей теплоте сгорания; при этом предполагается, что влага продуктов сгорания покидает котёл в виде перегретого пара. В конденсационных котлах эта влага конденсируется, теплота конденсации полезно используется. При расчёте КПД по низшей теплоте сгорания он в итоге может получиться больше единицы. В данном случае корректнее было бы считать его по высшей теплоте сгорания, учитывающей теплоту конденсации пара; однако при этом показатели такого котла трудно сравнивать с данными о других установках.
Тепловые насосы и холодильные машины
Достоинством тепловых насосов как нагревательной техники является возможность получать больше теплоты, чем расходуется энергии на их работу. Холодильная машина может отвести от охлаждаемого конца больше теплоты, чем затрачивается энергии на организацию процесса.
Эффективность машин характеризует холодильный коэффициент (англоязычный аналог COP)
- εX=QXA{\displaystyle \varepsilon _{\mathrm {X} }=Q_{\mathrm {X} }/A},
где QX{\displaystyle Q_{\mathrm {X} }} — тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность); A{\displaystyle A} — затрачиваемая на этот процесс работа (или электроэнергия).
Для тепловых насосов используют термин коэффициент трансформации
- εΓ=QΓA{\displaystyle \varepsilon _{\Gamma }=Q_{\Gamma }/A},
где QΓ{\displaystyle Q_{\Gamma }} — тепло конденсации, передаваемое теплоносителю; A{\displaystyle A} — затрачиваемая на этот процесс работа (или электроэнергия).
В идеальной машине QΓ=QX+A{\displaystyle Q_{\Gamma }=Q_{\mathrm {X} }+A}, отсюда для идеальной машины εΓ=εX+1{\displaystyle \varepsilon _{\Gamma }=\varepsilon _{\mathrm {X} }+1}
Наилучшими показателями производительности для холодильных машин обладает обратный цикл Карно: в нём холодильный коэффициент
- ε=TXTΓ−TX{\displaystyle \varepsilon ={T_{\mathrm {X} } \over {T_{\Gamma }-T_{\mathrm {X} }}}},
где TΓ{\displaystyle T_{\Gamma }}, TX{\displaystyle T_{\mathrm {X} }} — температуры горячего и холодного концов, K. Данная величина, очевидно, может быть сколь угодно велика; хотя практически к ней трудно приблизиться, холодильный коэффициент может превосходить единицу. Это не противоречит первому началу термодинамики, поскольку, кроме принимаемой в расчёт энергии A (напр., электрической), в тепло Q идёт и энергия, отбираемая от холодного источника.
Что такое источник тока
Это устройство или элемент, в общем понимании – двухполюсник, у которого проходящий через него ток не зависит от величины напряжения на полюсах. Основные характеристики источника тока (ИТ):
- величина;
- внутренняя проводимость (импеданс).
Внутреннее сопротивление такого двухполюсника очень мало. У идеального источника (ИИТ) оно приближается к нулю.
Графическое обозначение и вольт-амперная характеристика (ВАХ) ИТ
Генераторы движения электронов могут быть как независимыми, так и зависимыми.
Первые представляют собой идеальный двухполюсник, с двумя зажимами. У них ток, движущийся от одного зажима к другому, не зависит от формы и величины разности потенциалов на зажимах. Его изменения происходят по своим законам.
Второй тип ИТ – идеальный двухполюсник, с двумя зажимами, у которого движение зарядов от одного зажима к другому зависит от формы и величины напряжения на этих зажимах.
Существует управляемый зависимый ИТ. Он представляет собой идеальный двухполюсник, имеющий 2 зажима на входе и 2 зажима на выходе. Его особенность в том, что выходное значение тока на выходе зависит от его величины на входе. В таком ИТ происходит усиление мощности. Изменяя нулевое значение мощности на его входе, управляют величину мощности на выходных зажимах.
Информация. Управление производителем энергии может осуществляться напряжением (ИТУН) или током (ИТУТ). Одни находят применение для полевых триодов и электровакуумных ламп, вторые – для транзисторов биполярного типа.
В реальности генераторы тока имеют определённые ограничения по напряжению. Они далеки от идеальных ИТ и создают движение электричества в таком интервале напряжений, где их верхняя граница зависит от Uпит ИТ. Следовательно, у реального источника тока есть существенные пределы по нагрузке.
Что приведет к успеху?
В первую очередь, это скилл. Только личный опыт поможет в дальнейшем одерживать победу.
На втором месте стоит топовая техника
. Опытные геймеры не рекомендуют использовать стоковые машины, поскольку медленные танки, не оказывающие результативные поддержку огнем слишком скучны
Именно поэтому важно при помощи свободного опыта совершенствовать танки до топа
Немаловажным фактором является . Обучение и переобучение лучше всего производить за счет голда.
В каждом бою при вас должны присутствовать голдовые снаряды, которые эффективнее пробивают соперников. Чем чаще это происходит, тем лучше результат команды.
Постоянные магниты как источники энергии для двигателей
Второй интересный источник — постоянный магнит, который ниоткуда не получает энергию, а магнитное поле не расходуется даже при совершении работы. Например, если магнит что-либо притянет к себе, то он выполнит работу, а его магнитное поле слабее не станет. Это свойство уже не раз пытались использовать для создания так называемого вечного двигателя, но пока что ничего более-менее нормального из этого не получилось. Любой механизм износится рано или поздно, но сам источник, которым является постоянный магнит, практически вечен.
Впрочем, есть специалисты, которые утверждают, что со временем постоянные магниты теряют свои силы в результате старения. Это неправда, но даже если бы и было правдой, то вернуть его к жизни можно было бы всего лишь одним электромагнитным импульсом. Двигатель, который бы требовал перезарядку раз в 10-20 лет, хоть и не может претендовать на роль вечного, но очень близко к этому подходит.
Уже было много попыток создать вечный двигатель на базе постоянных магнитов. Пока что не было удачных решений, к сожалению. Но учитывая тот факт, что спрос на такие двигатели есть (его просто не может не быть), вполне возможно, что в скором будущем мы увидим что-то, что очень близко подойдет к модели вечного мотора, который будет работать на возобновляемой энергии.
Принцип функционирования
Для того чтобы понять, как же работает тепловой двигатель, необходимо рассмотреть основы его конструкции. Для функционирования прибора необходимы два тела: горячее (нагреватель) и холодное (холодильник, охладитель). Принцип действия тепловых двигателей (КПД тепловых двигателей) зависит от их вида. Зачастую холодильником выступает конденсатор пара, а нагревателем — любой вид топлива, сгорающий в топке. КПД идеального теплового двигателя находится по такой формуле:
КПД = (Тнагрев. — Тхолод.)/ Тнагрев. х 100%.
При этом КПД реального двигателя никогда не сможет превысить значения, полученного согласно этой формуле. Также этот показатель никогда не превысит вышеупомянутого значения. Чтобы повысить КПД, чаще всего увеличивают температуру нагревателя и уменьшают температуру холодильника. Оба эти процесса будут ограничены реальными условиями работы оборудования.
При функционировании теплового двигателя совершается работа, по мере которой газ начинает терять энергию и охлаждается до некой температуры. Последняя, как правило, на несколько градусов выше окружающей атмосферы. Это температура холодильника. Такое специальное устройство предназначено для охлаждения с последующей конденсацией отработанного пара. Там, где имеются конденсаторы, температура холодильника иногда ниже температуры окружающей среды.
Коэффициент полезного действия: дизель или бензин?
Сравнивая коэффициент полезного действия бензинового и дизельного силового агрегата, о низкой эффективности первого стоит сказать сразу. КПД бензинового мотора составляет всего 25 — 30 %. Если речь идет о дизельном аналоге, показатель в данном случае составляет 40 %. О 50 % может идти речь при установленном турбокомпрессоре. КПД на уровне 55 % допустим при условии использования на дизельном ДВС современной системы топливного впрыска в сочетании с турбиной (читайте о том, как работает турбина).
Несмотря на то, что силовые установки конструктивно похожи, разница в производительности существенная, на что влияет принцип образования рабочей топливно-воздушной смеси и дальнейшая реализация воспламенения заряда. Также существенным фактором является вид используемого топлива. Оборотистость бензиновых силовых агрегатов более высока, если сравнивать с дизельными вариантами, но потери намного больше, поскольку полезная энергия расходуется на тепло. Как итог, эффективность преобразования энергии бензина в механическую работу намного ниже, а большая её часть просто рассеивается в атмосфере.
Крутящий момент и мощность
Если взять как основу одинаковый показатель рабочего объёма, мощность бензинового двигателя превосходит дизельный, но для её достижения обороты должны быть более высокими. Вместе с увеличением оборотов возрастают и потери, расход топлива повышается. Сам крутящий момент также не стоит упускать из виду, поскольку это сила, передающаяся на колёса от мотора, именно она и заставляет автомобиль двигаться. Таким образом, максимальный показатель крутящего момента бензиновыми двигателями достигается на более высоких оборотах.
За счёт чего происходит увеличение мощности двигателя? Читайте об этом подробнее в любопытном материале нашего эксперта.
Дизельный двигатель с аналогичными показателями способен на низких оборотах достичь максимума крутящего момента, а для реализации полезной работы расходуется меньше солярки. Следовательно, КПД дизельного двигателя выше, а топливо расходуется более экономно.
Если сравнивать с бензином, то солярка образует тепло в большей степени при более высокой температуре сгорания топлива. Также наблюдается более высокий параметр детонационной стойкости.
Эффективность бензина и солярки
Находящиеся в составе дизельного топлива углеводороды более тяжёлые, чем бензиновые. Во многом меньший коэффициент полезного действия бензинового мотора обусловлен особенностями сгорания бензинового топлива и его энергетической составляющей. Преобразование тепла в полезную механическую энергию в дизельном двигателе происходит более полноценно, следовательно, сжигание одинакового количества топлива за единицу времени позволяет дизелю выполнить больше работы.
Не стоит также упускать из виду создание необходимых для полного сгорания смеси условий и особенности впрыска. Подача топлива в дизельных моторах происходит отдельно от воздуха, поскольку впрыскивание осуществляется непосредственно в цилиндр на завершающем этапе такта сжатия, а не во впускной коллектор. Как итог, удаётся достичь более высокой температуры, а сгорание каждой порции топлива происходит максимально полноценно.
Основные параметры электродвигателя
Момент электродвигателя
Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.
,
- где M – вращающий момент, Нм,
- F – сила, Н,
- r – радиус-вектор, м
Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле
,
- где Pном – номинальная мощность двигателя, Вт,
- nном — номинальная частота вращения, мин-1
Начальный пусковой момент — момент электродвигателя при пуске.
Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)
1 oz = 1/16 lb = 0,2780139 N (Н)1 lb = 4,448222 N (Н)
момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)
1 oz∙in = 0,007062 Nm (Нм)1 lb∙in = 0,112985 Nm (Нм)
Мощность электродвигателя
Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.
Мощность электродвигателя постоянного тока
Механическая мощность
Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.
,
- где P – мощность, Вт,
- A – работа, Дж,
- t — время, с
Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы .
,
где s – расстояние, м
Для вращательного движения
,
где – угол, рад,
,
где – углавая скорость, рад/с,
Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя
Справка: Номинальное значение — значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.
Коэффициент полезного действия электродвигателя
Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.
,
- где – коэффициент полезного действия электродвигателя,
- P1 — подведенная мощность (электрическая), Вт,
- P2 — полезная мощность (), Вт
- При этом
потери в электродвигатели обусловлены:
электрическими потерями — в виде тепла в результате нагрева проводников с током;
магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.
КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.
Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.
где n — частота вращения электродвигателя, об/мин
Момент инерции ротора
Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси
,
- где J – момент инерции, кг∙м2,
- m — масса, кг
Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)
1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)
Момент инерции связан с моментом силы следующим соотношением
,
где – угловое ускорение, с-2
,
Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86
Номинальное напряжение
Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики .
Электрическая постоянная времени
Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.
,
где – постоянная времени, с
Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.