Дизельный двигатель: устройство системы питания
Содержание:
- Схема устройства системы питания дизельного ДВС
- Топливоподкачивающий насос
- Режимы работы системы питания
- Функции, устройство и принцип функционирования
- Системы двигателя
- Превращение тепла выхлопных газов в электрический ток
- РЕЖИМЫ РАБОТЫ СИСТЕМЫ ПИТАНИЯ
- Виды конструкций камер сгорания:
- Неисправности топливной системы
- Затрудненный пуск двигателя.
- Двигатель потерял мощность.
- Слишком большой расход солярки
- Жирный черный выхлоп из трубы
- Выхлоп белого или серого цвета, очень дымный.
- Мотор по ощущениям работает слишком «жестко»
- Двигатель шумит
- Неровная работа на холостую и при езде
- Двигатель внезапно глохнет
- Приходится часто менять свечи
- План питания DASH
Схема устройства системы питания дизельного ДВС
Система питания дизельного двигателя состоит из следующих базовых элементов:
- топливный бак;
- фильтры грубой очистки дизтоплива;
- фильтры тонкой очистки топлива;
- топливоподкачивающий насос;
- топливный насос высокого давления (ТНВД);
- инжекторные форсунки;
- трубопровод низкого давления;
- магистраль высокого давления;
- воздушный фильтр;
Дополнительными элементами частично становится электронасосы, выпуск отработанных газов, сажевые фильтры, глушители и т.д. Систему питания дизельных ДВС принято делит на две группы топливной аппаратуры:
- дизельная аппаратура для повода топлива (топливоподводящая);
- дизельная аппаратура для подвода воздуха (воздухоподводящая);
Топливоподводящая аппаратура может иметь различное устройство, но сегодня наиболее распространена система разделенного типа. В такой системе топливный насос высокого давления (ТНВД) и форсунки реализованы в виде отдельных устройств. Топливо подается в дизельный двигатель по магистралям высокого и низкого давления.
Дизельное топливо хранится, фильтруется и подается к ТНВД под невысоким давлением посредством магистрали низкого давления. В магистрали высокого давления ТНВД поднимает давление в системе для осуществления подачи и впрыска строго определенного количества топлива в рабочую камеру сгорания дизельного двигателя в заданный момент.
В системе питания дизеля присутствуют сразу два насоса:
- топливоподкачивающий насос;
- топливный насос высокого давления;
Топливоподкачивающий насос обеспечивает подачу топлива из топливного бака, прокачивает горючее через фильтр грубой и тонкой очистки. Давление, которое создает топливоподкачивающий насос, позволяет осуществить подачу топлива по топливопроводу низкого давления к топливному насосу высокого давления.
ТНВД реализует подачу топлива к форсункам под высоким давлением. Подача происходит в соответствии с порядком работы цилиндров дизельного мотора. Топливный насос высокого давления имеет определенное количество одинаковых секций. Каждая из таких секций ТНВД соответствует определенному цилиндру дизельного двигателя.
Данные моторы работают жестко и шумно, имеют небольшой срок службы. В конструкции их системы питания отсутствуют топливопроводы магистрали высокого давления. Указанный тип ДВС не имеет большого распространения.
Вернемся к массовой конструкции дизельного мотора. Дизельные форсунки располагаются в головке блока цилиндров (ГБЦ) дизельного двигателя. Основной их задачей становится точное распыление горючего в камере сгорания двигателя. Топливоподкачивающий насос подает к ТНВД большое количество топлива. Получившиеся избытки горючего и проникающий в систему топливоподачи воздух возвращаются в топливный бак по специальным трубопроводам, которые называются дренажными.
Инжекторные дизельные форсунки бывают двух видов:
- дизельная форсунка закрытого типа;
- дизельная форсунка открытого типа;
Четырехтактные дизельные моторы преимущественно получают форсунки закрытого типа. В таких устройствах сопла форсунки, которые представляют собой отверстие, закрываются особой запорной иглой.
Получается, что внутренняя полость, расположенная внутри корпуса распылителей форсунок, сообщается с камерой сгорания только во время открытия форсунки и в момент впрыска дизельного топлива.
Ключевым элементом в конструкции форсунки выступает распылитель. Распылитель получает от одного до целой группы сопловых отверстий. Именно эти отверстия и образуют факел топлива в момент впрыска. От их количества и расположения зависит форма факела, а также пропускная способность форсунки.
Топливоподкачивающий насос
Основной топливоподкачавающий насос обеспечивает бесперебойную подачу топлива из баков к ТНВД при работающем двигателе. Он обычно приводится в действие от коленчатого или распределительного вала двигателя. Может применяться и автономный электродвигатель, питаемый от генератора ТС. Использование электропривода обеспечивает равномерную подачу топлива независимо от частоты вращения коленчатого вала и возможность аварийного отключения всей системы. Существуют различные конструкции топливоподкачивающих насосов. Они могут быть:
- шестеренными
- плунжерными (поршневыми)
- коловратными (пластинчатого типа)
Как правило, применяются плунжерные и коловратное насосы.
Плунжерный топливоподкачивающий насос
Плунжерный топливоподкачивающий насос состоит из корпуса 5, плунжера 7 с пружиной 6, толкателя 10 с роликом 77, пружиной 9 и штоком 8, а также клапанов — впускного 4 и нагнетательного 1 с пружинами. Толкатель с плунжером могут перемещаться вверх-вниз. Перемещение вверх происходит при повороте эксцентрика 72, изготовленного как одно целое с кулачковым валом ТНВД; перемещение вниз обеспечивают пружины 6 и 9.
При сбегании выступа эксцентрика с ролика толкателя плунжер под действием пружины б перемещается вниз, вытесняя топливо, находящееся под ним, в нагнетательную магистраль насоса. В это время нагнетательный клапан закрыт, а впускной под действием разрежения над плунжером открыт, и топливо поступает из впускной магистрали в надплунжерную полость. При движении толкателя и плунжера вверх впускной клапан закрывается под действием давления топлива, а нагнетательный, наоборот, открывается, и топливо из надплунжерной полости поступает в нижнюю камеру под плунжером. Таким образом, нагнетание топлива происходит только при движении плунжера вниз.
Если подачу топлива в цилиндры двигателя уменьшают, в выпускном трубопроводе насоса, а значит, и в полости под плунжером давление возрастает. В этом случае плунжер не может опуститься вниз даже под действием пружины 6, и толкатель со штоком перемещается вхолостую. По мере расходования топлива давление в нагнетательной полости понижается, и плунжер под действием пружины 6 опять начинает перемещаться вниз, обеспечивая подачу топлива.
Плунжерный топливоподкачивающий насос обычно совмещен с насосом 2 ручной подкачки топлива. Данный насос устанавливается на входе в основной топливоподкачивающий насос и приводится в действие вручную за счет перемещения поршня 3 со штоком. При движении поршня вверх под ним образуется разрежение, открывается впускной клапан, и топливо заполняет подплунжерное пространство. При перемещении поршня вниз впускной клапан закрывается, а нагнетательный открывается, позволяя топливу пройти далее по топливной магистрали.
Коловратный топливоподкачивающий насос
В мощных быстроходных дизелях применяются в основном коловратные топливоподкачивающие насосы. Ротор 7 насоса приводится во вращение от коленчатого вала двигателя. В роторе имеются прорези, в которые вставлены пластины 6. Одним (наружным) концом пластины скользят по внутренней поверхности направляющего стакана 8, а другим (внутренним) — по окружности плавающего пальца 5, расположенного эксцентрически относительно оси ротора. При этом они то выдвигаются из ротора, то вдвигаются в него. Ротор и пластины делят внутреннюю полость направляющего стакана на камеры А, Б и В, объемы которых при вращении ротора непрерывно меняются. Объем камеры А увеличивается, поэтому в ней создается разрежение, под действием которого топливо засасывается из впускной магистрали. Объем камеры В уменьшается, давление в ней повышается, и топливо вытесняется в нагнетательную полость насоса. Топливо, находящееся в камере Б, переходит от входного отверстия стакана к выходному. При повышении давления в нагнетательной полости до определенного уровня открывается редукционный клапан 2, преодолевая усилие пружины 7, и излишек топлива перепускается обратно во впускную полость насоса. Поэтому в нагнетательной полости и выпускном трубопроводе поддерживается постоянное давление. Перед пуском, когда двигатель и, следовательно, основной топливоподкачивающий насос не работают, топливо через него может прокачиваться предпусковым топливоподкачивающим насосом. В этом случае открывается перепускной клапан 3, преодолевая усилие пружины 4. В закрытом положении тарелка этого клапана перекрывает отверстия в тарелке редукционного клапана.
Режимы работы системы питания
В зависимости от целей и дорожных условий водитель может применять различные режимы движения. Им соответствуют и определенные режимы работы системы питания, каждому из которых присуща топливно-воздушная смесь особого качества.
- Состав смеси будет богатым при запуске холодного двигателя. При этом потребление воздуха минимально. В таком режиме категорически исключается возможность движения. В противном случае это приведет к повышенному потреблению горючего и износу деталей силового агрегата.
- Состав смеси будет обогащенным при использовании режима «холостого хода», который применяется при движении «накатом» или работе заведенного двигателя в прогретом состоянии.
- Состав смеси будет обедненным при движении с частичными нагрузками (например, по равнинной дороге со средней скоростью на повышенной передаче).
- Состав смеси будет обогащенным в режиме полных нагрузок при движении автомобиля на высокой скорости.
- Состав смеси будет обогащенным, приближенным к богатому, при движении в условиях резкого ускорения (например, при обгоне).
Выбор условий работы системы питания, таким образом, должен быть оправдан необходимостью движения в определенном режиме.
Функции, устройство и принцип функционирования
Каждый автомобиль характеризуется таким понятием, как «запас хода». Он определяется расстоянием, которое автомобиль способен преодолеть на полном топливном баке без дополнительных заправок. На данный показатель оказывают влияние самые различные факторы: сезонные, погодные и природные условия движения, характер дорожного покрытия, степень загруженности автомобиля, индивидуальные особенности водителя при управлении транспортным средством и т.д.). Однако главенствующую роль в определении «аппетита» автомобиля играет система питания и ее правильная работа.
- подачи топлива, его очистки и хранения;
- очистки воздуха;
- приготовления специальной горючей смеси;
- подачи смеси в цилиндры ДВС.
Классическая система питания автомобиля состоит из следующих структурных элементов:
- топливного бака, предназначенного для хранения горючего;
- топливного насоса, выполняющего функции создания давления в системе и принудительной подачи топлива;
- топливопроводов – специальных металлических трубок и резиновых шлангов для транспортировки горючего из топливного бака к ДВС (а излишков топлива – в обратном направлении);
- фильтра (или фильтров) очистки топлива;
- воздушного фильтра (для очистки воздуха от примесей);
- устройства приготовления топливно-воздушной смеси.
Система питания имеет достаточно простой принцип работы: под воздействием специального топливного насоса горючее из бака, предварительно пройдя процедуру очистки топливным фильтром, по топливопроводам подается к устройству, предназначенному для приготовления топливно-воздушной смеси. И уже затем смесь подается в цилиндры двигателя.
Системы двигателя
Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:
- ГРМ (механизм регулировки фаз газораспределения);
- Система смазки;
- Система охлаждения;
- Система подачи топлива;
- Выхлопная система.
ГРМ — газораспределительный механизм
Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:
- Распределительный вал;
- Впускные и выпускные клапаны с пружинами и направляющими втулками;
- Детали привода клапанов;
- Элементы привода ГРМ.
ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.
Система смазки
В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:
- Масляный картер (поддон);
- Насос подачи масла;
- Масляный фильтр с редукционным клапаном;
- Маслопроводы;
- Масляный щуп (индикатор уровня масла);
- Указатель давления в системе;
- Маслоналивная горловина.
Система охлаждения
Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:
- Рубашка охлаждения двигателя;
- Насос (помпа);
- Термостат;
- Радиатор;
- Вентилятор;
- Расширительный бачок.
Система подачи топлива
Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:
- Топливный бак;
- Датчик уровня топлива;
- Фильтры очистки топлива — грубой и тонкой;
- Топливные трубопроводы;
- Впускной коллектор;
- Воздушные патрубки;
- Воздушный фильтр.
В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.
Выхлопная система
Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:
- Выпускной коллектор;
- Приемная труба глушителя;
- Резонатор;
- Глушитель;
- Выхлопная труба.
В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.
Превращение тепла выхлопных газов в электрический ток
Для осуществления конвертации теплоты в ток было предложено установить термоэлектрический элемент. Это позволило бы сократить потребление электроэнергии от главного источника питания штатного генератора. Такая постановка задачи позволит значительно сэкономить ресурс движения автомобиля.
«Для конвертации 1 кВт*ч электроэнергии приходится сжечь на 6 кВт*ч бензина».
Итак, термоэлектрогенератор устанавливается на выхлопной трубе.
Принцип действия термоэлектрогенератора основан на основе «теллурида виснута», что обозначает конвертацию разницы температур охлаждающей жидкости и отработавших газов в электрический ток. Размеры данного устройства составляют 10 на 30 см и позволяет выдавать порядка 600 Вт дополнительной мощности.
Проблема, которая стала перед нами, заключается в том, что преобразование происходит при движение автомобиля со скоростью свыше 120 км/час. Аргументируется это малой температурой выхлопных газов. Но при хорошем разгоне по трассе свыше 120 км/час, можно получить дополнительно около 1 КВт, что для БМВ не проблема.
РЕЖИМЫ РАБОТЫ СИСТЕМЫ ПИТАНИЯ
В зависимости от целей и дорожных условий водитель может применять различные режимы движения. Им соответствуют и определенные режимы работы системы питания, каждому из которых присуща топливно-воздушная смесь особого качества.
- Состав смеси будет богатым при запуске холодного двигателя. При этом потребление воздуха минимально. В таком режиме категорически исключается возможность движения. В противном случае это приведет к повышенному потреблению горючего и износу деталей силового агрегата.
- Состав смеси будет обогащенным при использовании режима «холостого хода», который применяется при движении «накатом» или работе заведенного двигателя в прогретом состоянии.
- Состав смеси будет обедненным при движении с частичными нагрузками (например, по равнинной дороге со средней скоростью на повышенной передаче).
- Состав смеси будет обогащенным в режиме полных нагрузок при движении автомобиля на высокой скорости.
- Состав смеси будет обогащенным, приближенным к богатому, при движении в условиях резкого ускорения (например, при обгоне).
Выбор условий работы системы питания, таким образом, должен быть оправдан необходимостью движения в определенном режиме.
Виды конструкций камер сгорания:
- Камера сгорания с прямым впрыском
- Камера сгорания с непрямым впрыском.
Камера сгорания с прямым впрыском
В камере сгорания с прямым впрыском топливо впрыскивается непосредственно у закрытого конца цилиндра. Давайте рассмотрим подробнее схему камеры сгорания открытого типа.
Камеры сгорания, как правило использовались на тяжелых автомобилях, но после модификации стали использоваться на автомобилях с 2-х литровым двигателем. Как вы видите в поршне имеется глубокая выемка в которой находится воздух, в тот момент когда поршень находится в ВМТ (верхней мертвой точке) в непосредственной близости к головке цилиндров. Поэтому, чтобы получить требуемую степень сжатия, необходимо использование верхнеклапанного механизма. Для головок цилиндров в головке поршня имеются неглубокие выемки для обеспечения необходимых зазоров. При неправильной регулировке клапанов, последние будут бить по поршню. Для подачи тонко распыленного топлива с давлением 175 бар с струю воздуха применяется форсунка, затем топливовоздушная смесь поступает в выемку поршня (камеру сгорания). Завихрение в этом случае образуется в вертикальной и горизонтальной плоскостях.
При подъеме поршня воздух заходит в выемку и перемещается примерно так, как изображено на рисунке. Когда поршень находится в ВМТ, это движение еще больше ускоряется благодаря завихрению поршня между поршнем и головкой. Горизонтальное или вращающееся завихрение может быть получено путем использования завихрителя на впускном клапане.
Комбинация двух вихревых потоков создает «круговорот» воздуха в выемке и обеспечивает необходимую подачу кислорода в область горения.
Камера сгорания с непрямым впрыском
При непрямом впрыске может впрыск более равномерный, за счет этого необходимо меньшее давление впрыска. Непрямой впрыск обеспечивает работу двигателя в большом диапазоне оборотов.
Фирма Ricardo Comet сконструировала большинство камер сгорания с непрямым впрыском. В камерах непрямого впрыска имеется вихрекамера, которая соединяется каналом с главной камерой. Благодаря этому конструкция позволяет работать с более высокими температурами.
Неисправности топливной системы
Основная причина любых неисправностей системы питания дизельного двигателя – износ конструктивных элементов и узлов. Типичные неисправности, возникающие после определенного пробега двигателя – износ оси рычага регулятора и выход из строя резинового кольца уплотнения в магистрали низкого давления.
Еще одна распространенная проблема – накопление в узлах и магистралях грязи и нагара, от которых следует регулярно избавлять двигатель путем промывки.
Другие типичные неисправности:
Затрудненный пуск двигателя.
Возможные причины:
- неисправность свечей накаливания;
- неправильный сорт солярки;
- завоздушивание системы;
- износ элементов нагнетания топлива;
- неисправность подкачивающего насоса/ТНВД;
- неверно выставленный угол опережения топливоподачи;
- поломка регуляторов или датчиков системы.
Двигатель потерял мощность.
Вероятные причины:
- износ деталей ТНВД или нарушение регулировки;
- неправильно установленный угол опережения;
- изношенные или вышедшие из строя распылители форсунок;
- слишком низкое давление в системе;
- завоздушивание;
- поломка подкачивающего насоса;
- засорение фильтров.
Слишком большой расход солярки
Причины:
- неправильный угол опережения;
- износ или разрегулирование ТНВД;
- повреждение форсунок или их износ;
- падение давления на впрыске;
- забивание воздушного фильтра;
- плохая компрессия;
- утечки горючего из системы;
- плохая герметичность системы топливоподачи;
- засорение сливного топливопровода (идущего от ТНВД к баку);
- сбой опережения впуска солярки или неверно выставленные обороты холостого хода;
- иные неисправности ДВС.
Жирный черный выхлоп из трубы
Причины:
- неполное закрытие клапанов или образование нагара, ведущее к плохому сгоранию смеси;
- слишком поздний впрыск;
- неверно выставленные зазоры клапанов;
- падение компрессии в цилиндрах;
- плохой топливный факел, формируемый форсунками.
Выхлоп белого или серого цвета, очень дымный.
Причины:
- падение компрессии;
- пробой прокладки ГБЦ;
- неверное опережение подачи топлива;
- двигатель переохлажден и нуждается в прогреве.
Мотор по ощущениям работает слишком «жестко»
Причины:
- впрыск происходит слишком рано;
- смесь в цилиндры поступает неравномерно;
- разрегулированы или неисправны форсунки;
- снижена компрессия.
Двигатель шумит
Причины:
- один или несколько узлов топливной системы загрязнены (фильтры, форсунки);
- система завоздушена;
- неполадки с уплотнительными шайбами распылителей или самими распылителями.
Неровная работа на холостую и при езде
Причины:
- неверно выставлены холостые обороты;
- неполадки с топливопроводом на участке между фильтром и ТНВД;
- повреждение опорной пластины ТНВД;
- неверно выставлено опережение;
- проблема с распылителями или форсунками, общие неполадки в топливной системе;
- неисправность регулятора оборотов коленвала;
- избыточное давление картерных газов.
Двигатель внезапно глохнет
Причины:
- нарушен угол опережения;
- засорен топливный фильтр;
- не подается горючее (например, из-за поломки ТНВД);
- повреждена магистраль впрыска.
Приходится часто менять свечи
Обычно это происходит из-за неисправности форсунок в цилиндрах, соответствующих неисправным свечам.
Большинства неисправностей можно избежать путем своевременного технического обслуживания системы питания дизельного двигателя.
План питания DASH
Придерживаться данной концепции в питании не сложно. Продукты, которые необходимы для ее поддержания, вы легко найдете в магазине. Этот план включает ежедневное употребление определенных порций продуктов различных групп. Количество и величина порций зависит от ваших индивидуальных потребностях в калориях, в зависимости от того, насколько вы физически активны и вашего возраста.
- Если ваша цель сохранить и поддерживать ваш текущий вес, вам необходимо потреблять столько калорий, сколько ваш организм способен сжигать в течение дня.
- Если ваша цель — похудеть, то вам следует потреблять калорий меньше, чем ваше тело сжигает при повседневном обычном ритме жизни. Либо увеличить физические нагрузки, чтобы калории сжигались интенсивнее.
Обратите внимание на свою физическую активность:
- Стандарт. Вы физически активны на столько, на сколько активен ваш ритм жизни.
- Умеренно активны. Когда вы ежедневно проходите 1,5-3 километра со скоростью от 4-5 км в час, либо выполняете комплексе не сложных физических упражнений.
- Активный. Если ваша физическая активность превышает нормы, относящиеся к «умеренной»
Используйте данную таблицу для оценки ваших ежедневных потребностях в калориях.
Ежедневная потребность в калориях для женщин.
Ежедневная потребность в калориях для мужчин.
После выявления ваших потребностях в калориях, перейдите в таблицу ниже и найдите самый близкий уровень калорийности к вашему. Затем определите необходимое количество ежедневных порций по группам продуктов, которое необходимо употреблять именно вам.
План питания DASH количество порций пищевых продуктов по уровню калорийности
*Цельнозерновой хлеб рекомендуется для зерновой группы как основной компонент порций. Он отличный источник клетчатки и питательных веществ. *Для людей, не переносящих лактозу. Рекомендуется употребления молочных продуктов без нее. *Количество жира измеряется общем количеством порций жиров и масел. Например: одна столовая ложка обычной салатной заправки = одной порции. Если она маложирная, то одна столовая ложка буде =0,5 порции. И если она вовсе не содержит жиров, то одна столовая ложка будет=0 порции. *План питания DASH ограничивает прием соли либо 2500 мг, либо 1500 мг в день.