Топливная система автомобилей фольксваген, ауди, шкода, сеат fuel system
Содержание:
- Принцип работы насос-форсунки
- Неисправности топливной системы
- Затрудненный пуск двигателя.
- Двигатель потерял мощность.
- Слишком большой расход солярки
- Жирный черный выхлоп из трубы
- Выхлоп белого или серого цвета, очень дымный.
- Мотор по ощущениям работает слишком «жестко»
- Двигатель шумит
- Неровная работа на холостую и при езде
- Двигатель внезапно глохнет
- Приходится часто менять свечи
- На продолжительность периода задержки воспламенения топлива и на характер процесса сгорания влияют следующие факторы:
- Особенность системы, ее составные части
- Сommon Rail в действии
- Устройство и принцип работы бензиновой системы питания
- ТНВД. Устройство и принцип работы
- Системы двигателя
- Инжекторные топливные системы
- Основные неисправности и ресурс топливных насосов
Принцип работы насос-форсунки
Формирование и распределение топливовоздушной смеси в системе насос-форсунки происходит в три этапа:
- Предварительный впрыск – осуществляется для обеспечения плавного сгорания топливовоздушной смеси на основном этапе работы двигателя.
- Основной впрыск – выполняет образование топливовоздушной смеси в оптимальном для текущего режима соотношении.
- Дополнительный впрыск – предназначен для очистки системы от остатков сажи в фильтре (регенерации).
Насос форсунка и ее положение в головке блока цилиндров
Сам процесс работы насос-форсунок заключается в следующем:
Кулачковый механизм, расположенный на распредвале, воздействует на плунжер, перемещая его в нижнюю позицию. Это обеспечивает перетекание горючего по каналам топливной форсунки. Когда клапан закрывается, топливо перестает поступать в камеру и давление начинает повышаться до уровня 13 МПа. При достижении критического показателя игла форсунки преодолевает давление пружины и начинает перемещаться в верхнее положение, что и обеспечивает впрыск топлива.
Далее, работа форсунки зависит от вида впрыска. При предварительном впрыске топливо поступает в магистраль впуска, и давление падает. В некоторых случаях этот режим может повториться. Во время основного впрыска топлива плунжер продолжает движение вниз, и клапан закрывается. Давление топлива повышается до 30 МПа и лишь по достижению этого уровня игла начинает подниматься, выполняя впрыск и образуя топливовоздушную смесь.
Регулировка количества топлива происходит в зависимости от уровня давления, максимум которого составляет 220 МПа. Завершение основного впрыска происходит открытием клапана, в результате чего уровень сжатия падает, и игла распылителя опускается в исходное положение. Дальнейшее движение плунжера вниз провоцирует дополнительный впрыск топлива (как правило, их два). При этом работа форсунки аналогична основному этапу.
Неисправности топливной системы
Основная причина любых неисправностей системы питания дизельного двигателя – износ конструктивных элементов и узлов. Типичные неисправности, возникающие после определенного пробега двигателя – износ оси рычага регулятора и выход из строя резинового кольца уплотнения в магистрали низкого давления.
Еще одна распространенная проблема – накопление в узлах и магистралях грязи и нагара, от которых следует регулярно избавлять двигатель путем промывки.
Другие типичные неисправности:
Затрудненный пуск двигателя.
Возможные причины:
- неисправность свечей накаливания;
- неправильный сорт солярки;
- завоздушивание системы;
- износ элементов нагнетания топлива;
- неисправность подкачивающего насоса/ТНВД;
- неверно выставленный угол опережения топливоподачи;
- поломка регуляторов или датчиков системы.
Двигатель потерял мощность.
Вероятные причины:
- износ деталей ТНВД или нарушение регулировки;
- неправильно установленный угол опережения;
- изношенные или вышедшие из строя распылители форсунок;
- слишком низкое давление в системе;
- завоздушивание;
- поломка подкачивающего насоса;
- засорение фильтров.
Слишком большой расход солярки
Причины:
- неправильный угол опережения;
- износ или разрегулирование ТНВД;
- повреждение форсунок или их износ;
- падение давления на впрыске;
- забивание воздушного фильтра;
- плохая компрессия;
- утечки горючего из системы;
- плохая герметичность системы топливоподачи;
- засорение сливного топливопровода (идущего от ТНВД к баку);
- сбой опережения впуска солярки или неверно выставленные обороты холостого хода;
- иные неисправности ДВС.
Жирный черный выхлоп из трубы
Причины:
- неполное закрытие клапанов или образование нагара, ведущее к плохому сгоранию смеси;
- слишком поздний впрыск;
- неверно выставленные зазоры клапанов;
- падение компрессии в цилиндрах;
- плохой топливный факел, формируемый форсунками.
Выхлоп белого или серого цвета, очень дымный.
Причины:
- падение компрессии;
- пробой прокладки ГБЦ;
- неверное опережение подачи топлива;
- двигатель переохлажден и нуждается в прогреве.
Мотор по ощущениям работает слишком «жестко»
Причины:
- впрыск происходит слишком рано;
- смесь в цилиндры поступает неравномерно;
- разрегулированы или неисправны форсунки;
- снижена компрессия.
Двигатель шумит
Причины:
- один или несколько узлов топливной системы загрязнены (фильтры, форсунки);
- система завоздушена;
- неполадки с уплотнительными шайбами распылителей или самими распылителями.
Неровная работа на холостую и при езде
Причины:
- неверно выставлены холостые обороты;
- неполадки с топливопроводом на участке между фильтром и ТНВД;
- повреждение опорной пластины ТНВД;
- неверно выставлено опережение;
- проблема с распылителями или форсунками, общие неполадки в топливной системе;
- неисправность регулятора оборотов коленвала;
- избыточное давление картерных газов.
Двигатель внезапно глохнет
Причины:
- нарушен угол опережения;
- засорен топливный фильтр;
- не подается горючее (например, из-за поломки ТНВД);
- повреждена магистраль впрыска.
Приходится часто менять свечи
Обычно это происходит из-за неисправности форсунок в цилиндрах, соответствующих неисправным свечам.
Большинства неисправностей можно избежать путем своевременного технического обслуживания системы питания дизельного двигателя.
На продолжительность периода задержки воспламенения топлива и на характер процесса сгорания влияют следующие факторы:
• физические и химические свойства топлива;• температура и давление воздуха в период впрыска топлива;• характер и интенсивность вихревого движения воздуха в камере сгорания;• работа топливоподающей аппаратуры;• конструкция камеры сгорания;• угол опережения начала впрыска топлива;• нагрузка и частота вращения коленчатого вала.
Для наиболее эффективного протекания процесса сгорания необходимо, чтобы его продолжительность была как можно меньше, а давление в камере сгорания повышалось плавно. Очень резкое повышение давления приводит к «жесткой» работе двигателя.
{jcomments on}
Особенность системы, ее составные части
Если в целом посмотреть на устройство Common Rail, то можно обнаружить очень сильное сходство с инжекторными бензиновыми системами питания, особенно непосредственного впрыска. По сути, конструкторы просто позаимствовали все положительные качества, которыми обладает инжектор, и перенесли их на дизельную установку, но с учетом особенностей работы этого типа мотора.
Отличие дизельного двигателя от бензинового
Особенность этой системы, по отношению к классической механической, заключена в предварительном аккумулировании давления топлива перед подачей его в цилиндры. Отсюда и название – аккумуляторная топливная система.
Как и ранее на дизельных моторах, система питания делится на два контура – низкого и высокого давления. Дополнительно в конструкцию Common Rail добавили электронную часть, осуществляющей контроль и управление исполнительной частью.
Контур низкого давления
Эта составляющая конструктивно практически не изменилась. В его состав входят:
- бак,
- фильтрующие элементы (грубой и тонкой очистки);
- насос подкачки топлива;
- топливные трубопроводы.
Контур низкого давления
Дополнительно в этот контур включены еще некоторые детали – охладитель и подогреватель топлива, а также отсекатель. Об этих составных частях – ниже.
Контур высокого давления
А вот этот контур конструктивно значительно изменился, поскольку в него добавились новые составные элементы. Устройство этой части включает в себя:
- ТНВД;
- магистраль высокого давления;
- центральный магистральный трубопровод (рампа);
- форсунки;
- датчик и клапан регулировки давления.
Контур высокого давления
Суть этой конструкции заключена в том, что насос высокого давления качает топливо не к каждой форсунке по отдельности, как это было в механической системе, а закачивает его в магистральный трубопровод (рампу). А уже из нее оно подается на форсунки.
Использование в конструкции рампы позволяет поддерживать давление дизтоплива перед подачей в требуемом значении, при этом обороты мотора не оказывают на него никакого влияния. Это свою очередь оказывает положительное влияние на процесс подачи топлива при разных режимах функционирования мотора.
Основными рабочими элементами в этом контуре, как и раннее, являются ТНВД и форсунки.
Насос имеет механический привод, а количество плунжерных пар, создающих давление, может варьироваться от 1 до 3. Примечательно, что в таком насосе, поскольку нет надобности качать для каждой форсунки, на некоторых режимах плунжерные пары могут отключаться.
А вот форсунки конструктивно изменились. В Common Rail применяются электрогидравлические форсунки, оснащенные электромагнитными или пьезоэлектрическими клапанами управления. Применение их позволило обеспечить многократный впрыск, повышающий эффективность работы силовой установки.
Электронная составляющая
Что касается электронной части, то она практически полностью идентична используемой на инжекторных моторах. То есть, состоит она из электронного блока управления и ряда датчиков:
- давления в магистральном трубопроводе;
- скорости вращения коленвала;
- положения акселератора (педали газа);
- расхода воздуха;
- лямбда-зонда;
- температуры дизтоплива и воздуха.
На некоторых моторах применяется еще ряд других датчиков. Назначение электронной части идентично бензиновому мотору. Датчики передают информацию о работе систем и механизмов силовой установки и ряд других параметров. Поступающие данные блок сравнивает с табличными, занесенными в память, и на основе этого подает импульс на срабатывание форсунок.
Сommon Rail в действии
Топливный насос низкого давления (его роль может выполнять подкачивающая секция, расположенная в корпусе ТНВД либо электрический насос в топливном баке) подает топливо под давлением 2,6-7 бар к ТНВД, в котором и происходит нагнетание давления топлива. При прокрутке двигателя стартером ТНВД способен создавать давление 500-600 бар. После запуска двигателя эта величина вырастает до 1300-2000 бар.
В рейке постоянно поддерживается оптимальное давление, величина которого контролируется с помощью датчика давления, лишнее топливо сбрасывается регулятором в магистраль обратного слива. Регулятор может располагаться в топливной рейке либо в корпусе ТНВД. Дополнительно в рейке может быть вмонтирован клапан экстренного сброса топлива, предотвращающий разрыв рейки в случае нештатной ситуации. Также для более точной работы в некоторых системах в топливную рампу вмонтирован датчик температуры топлива. В некоторых вариантах системы можно встретить отдельную форсунку, использующуюся для увеличения дозировки топлива и прожига сажевого фильтра, в других системах работа двигателя в режиме прожига достигается изменением ЭБУ момента впрыска и количества подаваемого в цилиндры дизеля.
Форсунки
Под давлением топливо подается к форсункам, которые могут быть 2 видов.
- Электрогидравлические. Представляют собой обычные электромагнитные форсунки, поднятие иглы распылителя и подача топлива в которых осуществляется после подачи напряжения на электромагнитный клапан. Электромагнитные форсунки очень надежные и имеют высокий уровень ремонтопригодности.
- Пьезоэлектрические. Пьезокристалл при подаче на него напряжение очень быстро расширяется, позволяя игле подыматься в 3-4 раза быстрее, нежели в случае с электромагнитной форсункой. Это повышает быстродействие форсунки, благодаря чему за такт можно осуществить большее количество впрыска дизеля в камеру сгорания, а также точнее отмерить подаваемую порцию горючего. Но сложность конструкции оборачивается меньшим ресурсом и трудностями в ремонте.
ТНВД
Топливная система Сommon Rail была разработана специалистами компании Bosch, которой и принадлежит основная доля рынка дизельных систем впрыска. На данный момент существует 5 генераций ТНВД Bosch системы Сommon Rail.
- СР1 – трехплунжерный ТНВД с подкачивающей секцией, расположенной в баке. Насос лишен клапана дозирование топлива, его функцию выполняет регулятор давления, вмонтированный в рейку (отличительная черта систем с СР1). Чаще всего СР1 комплектуются электромагнитными форсунками.
- СР1Н – усовершенствованный вариант СР1. Вместо подкачивающего насоса в баке, в корпус ТНВД вмонтирована механическая подкачивающая секция. Главная особенность – наличие клапана регулировки количества топлива, нагнетаемого в рейку. По сравнению с СР1, обеспечивает большое давление – 1600-1800 бар. Также большая эффективность достигается за счет возможности принудительного отключения одного из плунжеров, когда в большом количества горючего нет необходимости.
- СР2 – ТНВД, предназначенные для тяжелого коммерческого транспорта.
- СР3. Отличительная черта – количество нагнетаемого топлива регулируется не в контуре высокого давления, а еще на подходе к плунжерам путем контроля объема топлива, подаваемого к насосу. СР3 имеет механическую топливоподкачивающую секцию (варианты с электронасосами крайне редки). Двигатели с ТНВД СР3 оснащались только пьезоэлектрическими форсунками CRI 3.
- СР4. ТНВД имеет две модификации: одноплунжерный CP 4.1 (создаваемое давление – 1800 бар) и 2-плунжерный CP 4.2 (максимальное давление – 2000 бар). ТНВД имеет встроенный регулятор давления и механическую секцию низкого давления (5 бар). Большинство двигателей с СР4 оснащаются пьезофорсунками, но существуют системы и с электрогидравлическими инжекторами.
Помимо Bosch, производством компонентов и усовершенствованием системы Сommon Rail занимаются Delfi (Lukas), Densо и др.
Посредством данных, полученных от датчика положения педали газа, ЭБУ понимает желаемый водителем уровень крутящего момента. Считывая данные с ДВКВ, ДВРВ, ДМРВ, ДТОЖ, датчика наддува, датчика температуры топлива в рампе, электронный блок управления двигателем оценивает фактическую режимную нагрузку на мотор и решает, в какой момент нужно подать сигнал на форсунки и сколько топлива впрыснуть в цилиндры за цикловую подачу.
Устройство и принцип работы бензиновой системы питания
Вне зависимости от типа используемого двигателя, топливная система автомобиля представляет собой сложно организованный механизм. Исходя из первого пункта статьи, наверное, каждый понял, что принципы построения системы питания на дизеле и бензиновом агрегате различаются, поэтому для их понимания следует рассмотреть каждый вариант в отдельности. Начнём, пожалуй, с топливной системы двигателя на бензине.
Как стало ясно, топливно-воздушная смесь для бензинового мотора формируется не в цилиндрах. Если быть точнее, то она может изготавливаться либо в топливораспределительном механизме (при использовании карбюратора), либо во впускном тракте (при использовании инжектора). В общем виде конструкция бензиновой системы питания выглядит так:
- Топливораспределительный узел – карбюратор или инжектор. Карбюраторная система работает по принципу смесеобразования в самом устройстве. То есть, внутренние жиклёры карбюратора выталкивают топливо в специальный канал, направленный во впускной тракт, по которому идёт воздух с большой скоростью (до 150 м/с) и смешивается с горючем. В итоге формируется топливно-воздушная смесь. Инжекторная же система питания через форсунки впрыскивает топливо напрямую во впускной тракт, где он смешивается с воздухом и попадает в цилиндры. Получается, что карбюратор, по сути, просто соединяет поток воздуха с жидким топливом, и они формируют единую смесь самостоятельно, отправляясь в цилиндры, а инжектор смешивает составляющие смеси путем разбрызгивания уже частичек топлива непосредственно во впускной тракт. Благодаря такой тонкой работе, инжекторные системы более экономичны, а работают под чутким управлением электроники. Из-за этого преимущества инжекторы уже давно вытеснили карбюраторы из автомобилестроительной сферы, поэтому последние можно встретить только на старых моделях авто;
- Топливные фильтры – элементы грубой и тонкой очистки. Данные узлы требуются для фильтрации топлива от сторонних фракций, что помогает продлить срок службы всех элементов системы и двигателя в частности;
- Топливные магистрали – шланги. Используются для циркуляции горючего от бака до топливораспределительного механизма;
- Ёмкость для хранения топлива – бензобак. Требуется, естественно, для сохранения необходимого количества бензина, подающегося в мотор через отмеченные ранее узлы;
- Нагнетатель давления – бензонасос. Создаёт нужное давление в топливной системе для того, чтобы топливо своевременно и в полной мере доходило из бака до нужных узлов.
Топливо-распределительный узел
Топливные фильтры
Топливный шланг
Бензобак
Бензонасос
Детальное описание каждого элемента системы рассматривать не будем, так как им посвящены многочисленные статьи на страницах нашего ресурса
Для общей информации обратим внимание на принцип работы топливной системы бензинового мотора:
- При запуске двигателя первым в работу вступает бензонасос, который за считанные секунды создаёт в системе нужное давление и нагнетает бензин к топливной рампе инжектора, к которой крепятся форсунки, или же в полости карбюратора;
- После этого начинают функционировать сами топливораспределительные узлы, отправляющие либо уже приготовленную топливную смесь в цилиндры (карбюратор), либо распрыскивающие горючее во впускной тракт (инжектор);
- Попав в мотор, бензино-воздушная смесь воспламеняется, и описанный порядок повторяется вновь.
Естественно, в процессе работы топливная система чётко дозирует топливо по заданным настройкам. Так, инжектор регулирует подачу топлива при помощи электронного блока управления, а карбюратор — через настроенные и подобранные ранее жиклёры.
ТНВД. Устройство и принцип работы
Топливный насос высокого давления 5 предназначен для точного дозирования топлива и его подачи в форсунки 4 под необходимым давлением и в определенный момент. В рядных двигателях такой насос помещают сбоку от двигателя, на верхней половине его картера. У V-образных двигателей его устанавливают в развале цилиндров. Существует множество типов ТНВД. В частности, на дизели сравнительно небольшой мощности, предназначенные для легковых автомобилей, как правило, устанавливают ТНВД распределительного типа с одним нагнетающим плунжером-распределителем. Однако мощные многоцилиндровые дизели чаще всего оборудованы многоплунжерными насосами. Пример такого ТНВД для шестицилиндрового V-образного дизеля представлен на рисунке.
Насос состоит из корпуса 5 с крышками, шести насосных секций, механизма привода насосных секций и механизма поворота плунжеров. Каждая насосная секция включает в себя плунжер 8, возвратную пружину 11 с опорными шайбами, нагнетательный клапан 3 с седлом, пружиной и упором, а также штуцер 2 и другие вспомогательные направляющие и крепежные детали. Механизм привода насосных секций состоит из кулачкового вала 7 и роликовых толкателей 6 с регулировочными болтами. В механизм поворота плунжеров входят поворотные втулки 10 с зубчатыми венцами и зубчатая рейка 9 с втулками и ограничительным винтом. Вдоль секций в корпусе насоса высверлены два продольных канала 1 и 4, соединенных друг с другом поперечными каналами. Каждый плунжер очень точно подогнан к своей гильзе, что обеспечивает достижение высокого давления с наименьшей утечкой топлива через зазоры.
Насос работает следующим образом. Кулачковый вал приводится во вращение от коленчатого вала двигателя с помощью зубчатой передачи (угловая скорость кулачкового вала в 2 раза меньше скорости коленчатого). Вращаясь, кулачковый вал перемещает своими кулачками роликовые толкатели 6, которые поднимают плунжеры вверх.
Обратный ход толкателей и плунжеров обеспечивается возвратными пружинами. К каналу 4 подводится топливо от топливоподкачивающего насоса, предварительно очищенное в фильтре тонкой очистки.
Когда плунжер находится в нижнем положении, топливо из канала 4 попадает в образовавшуюся надплунжерную полость. При движении плунжера вверх входное отверстие закрывается, и топливо под большим давлением проходит через нагнетательный клапан, штуцер и топливопровод высокого давления к форсунке.
Нагнетание топлива происходит до тех пор, пока надплунжерная полость не соединится со сливным каналом 1 с помощью осевых, радиальных и винтовых проточек в плунжере. При постоянном ходе плунжера, определяемом высотой выступа кулачка, количество подаваемого к форсунке топлива регулируется поворотом плунжера с помощью зубчатой рейки и поворотной втулки с зубчатым венцом. Винтовая проточка в плунжере выполнена так, что по мере его поворота изменяется расстояние от края перепускного отверстия, связанного с каналом 7, до края отсечной кромки винтовой проточки. При этом длина рабочего хода плунжера, во время которого происходит нагнетание топлива, также изменяется.
Для того чтобы топливо, подаваемое в цилиндры, успевало своевременно сгорать, и двигатель развивал наибольшую мощность, необходимо при росте частоты вращения коленчатого вала несколько увеличивать угол опережения впрыскивания топлива.
Регулирование этого угла у насосов с механическим управлением обеспечивается специальной центробежной муфтой, которая устанавливается в корпусе ТНВД и пропорционально частоте вращения коленчатого вала смещает на некоторый угол кулачковый вал насоса в направлении его вращения.
Системы двигателя
Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:
- ГРМ (механизм регулировки фаз газораспределения);
- Система смазки;
- Система охлаждения;
- Система подачи топлива;
- Выхлопная система.
ГРМ — газораспределительный механизм
Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:
- Распределительный вал;
- Впускные и выпускные клапаны с пружинами и направляющими втулками;
- Детали привода клапанов;
- Элементы привода ГРМ.
ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.
Система смазки
В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:
- Масляный картер (поддон);
- Насос подачи масла;
- Масляный фильтр с редукционным клапаном;
- Маслопроводы;
- Масляный щуп (индикатор уровня масла);
- Указатель давления в системе;
- Маслоналивная горловина.
Система охлаждения
Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:
- Рубашка охлаждения двигателя;
- Насос (помпа);
- Термостат;
- Радиатор;
- Вентилятор;
- Расширительный бачок.
Система подачи топлива
Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:
- Топливный бак;
- Датчик уровня топлива;
- Фильтры очистки топлива — грубой и тонкой;
- Топливные трубопроводы;
- Впускной коллектор;
- Воздушные патрубки;
- Воздушный фильтр.
В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.
Выхлопная система
Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:
- Выпускной коллектор;
- Приемная труба глушителя;
- Резонатор;
- Глушитель;
- Выхлопная труба.
В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.
Инжекторные топливные системы
Инжекторные топливные системы в настоящее время применяются гораздо чаще карбюраторных, особенно на бензиновых двигателях легковых автомобилей. Впрыск бензина во впускной коллектор инжекторного двигателя осуществляется с помощью специальных электромагнитных форсунок (инжекторов), установленных в головку блока цилиндров и управляемых по сигналу от электронного блока. При этом исключается необходимость в карбюраторе, так как горючая смесь образуется непосредственно во впускном коллекторе.
Рекомендуем: Устройство и принцип работы современного гидротрансформатора
Различают одно- и многоточечные системы впрыска. В первом случае для подачи топлива используется только одна форсунка (с ее помощью готовится рабочая смесь для всех цилиндров двигателя). Во втором случае число форсунок соответствует числу цилиндров двигателя. Форсунки устанавливают в непосредственной близости от впускных клапанов. Топливо впрыскивают в мелко распыленной виде на наружные поверхности головок клапанов. Атмосферный воздух, увлекаемый в цилиндры вследствие разрежения в них во время впуска, смывает частицы топлива с головок клапанов и способствует их испарению. Таким образом, непосредственно у каждого цилиндра готовится топливовоздушная смесь.
В двигателе с многоточечным впрыском при подаче электропитания к электрическому топливному насосу 7 через замок 6 зажигания бензин из топливного бака 8 через фильтр 5 подается в топливную рампу 1 (рампу инжекторов), общую для всех электромагнитных форсунок. Давление в этой рампе регулируется с помощью регулятора 3, который в зависимости от разрежения во впускном патрубке 4 двигателя направляет часть топлива из рампы обратно в бак. Понятно, что все форсунки находятся под одним и тем же давлением, равным давлению топлива в рампе.
Когда требуется подать (впрыснуть) топливо, в обмотку электромагнита форсунки 2 от электронного блока системы впрыска в течение строго определенного промежутка времени подается электрический ток. Сердечник электромагнита, связанный с иглой форсунки, при этом втягивается, открывая путь топливу во впускной коллектор. Продолжительность подачи электрического тока, т. е. продолжительность впрыска топлива, регулируется электронным блоком. Программа электронного блока на каждом режиме работы двигателя обеспечивает оптимальную подачу топлива в цилиндры.
Для того чтобы идентифицировать режим работы двигателя и в соответствии с ним рассчитать продолжительность впрыска, в электронный блок подаются сигналы от различных датчиков. Они измеряют и преобразуют в электрические импульсы значения следующих параметров работы двигателя:
- угол поворота дроссельной заслонки
- степень разрежения во впускном коллекторе
- частота вращения коленчатого вала
- температура всасываемого воздуха и охлаждающей жидкости
- концентрация кислорода в отработавших газах
- атмосферное давление
- напряжение аккумуляторной батареи
- и др.
Двигатели с впрыском бензина во впускной коллектор имеют ряд неоспоримых преимуществ перед карбюраторными двигателями:
- топливо распределяется по цилиндрам более равномерно, что повышает экономичность двигателя и уменьшает его вибрацию, вследствие отсутствия карбюратора снижается сопротивление впускной системы и улучшается наполнение цилиндров
- появляется возможность несколько повысить степень сжатия рабочей смеси, так как ее состав в цилиндрах более однородный
- достигается оптимальная коррекция состава смеси при переходе с одного режима на другой
- обеспечивается лучшая приемистость двигателя
- в отработавших газах содержится меньше вредных веществ
Вместе с тем системы питания с впрыском бензина во впускной коллектор имеют ряд недостатков. Они сложны и поэтому относительно дорогостоящи. Обслуживание таких систем требует специальных диагностических приборов и приспособлений.
Наиболее перспективной системой питания топливом бензиновых двигателей в настоящее время считается довольно сложная система с непосредственным впрыском бензина в камеру сгорания, позволяющая двигателю длительное время работать на сильно обедненной смеси, что повышает его экономичность и экологические показатели. В то же время из-за существования ряда проблем системы непосредственного впрыска пока не получили широкого распространения.
Основные неисправности и ресурс топливных насосов
Средний срок службы ключевых элементов системы составляет 200 000 километров. Ресурс можно сравнить с межремонтным интервалом бензиновый двигатель с ТНВД, когда машине требуется комплексное вмешательство. Основные неисправности насосов для подачи и поддержания давления в системе можно классифицировать по двум направлениям:
- Нарушения в блоке управления. Агрегат получает неправильные сигналы, что напрямую влияет на отзывчивость авто при езде;
- Механический износ отдельных деталей. Из-за достаточно сложной схемы топливного насоса, он является непригодным для восстановления (разборка, диагностика обойдутся дорого). Проще и дешевле купить новую деталь для последующей замены.