Как выглядит и где находится автомобильная турбина
Содержание:
- Принцип действия и устройство турбин. Активные и реактивные принципы работы турбин
- Правила эксплуатации
- Устройство турбонаддува
- Недостатки
- Виды нагнетателей
- Использование двух турбокомпрессоров и других турбо деталей
- Ось турбокомпрессора
- Принцип работы турбонаддува
- 4 Принцип работы турбонаддува (карбюраторный и дизельный двигатель)
- Конструктивные особенности
- Что такое турбояма или турболаг
- Паровая турбина
- Преимущества турбонаддува
- 1 Турбонаддув в автомобиле – общая информация
- Что такое турбонаддув в автомобиле
- Кратко о турбокомпрессоре и зачем он нужен
- Недостатки турбированных двигателей
- Об истории изобретения и внедрения турбонаддува
- Увеличение числа оборотов коленчатого вала двигателя
- Турбонаддув TDI: турбина с изменяемой геометрией
- Турбонаддув
Принцип действия и устройство турбин. Активные и реактивные принципы работы турбин
Особенности турбины как теплового двигателя
Турбина является тепловым ротационным двигателем, в котором потенциальная тепловая энергия пара (или газа) превращается в кинетическую, а последняя в свою очередь преобразуется в механическую работу вращения вала.
Пар с давлением более высоким, чем за турбиной, поступает в одно или несколько неподвижных каналов 5. В сопловых каналах пар расширяется, давление его падает, а скорость возрастает.
Из сопл пар поступает в рабочие каналы, образованные рабочими лопатками 3, закрепленными на диске 2. Двигаясь в рабочих каналах между рабочими лопатками и изменяя свое направление, поток пара оказывает силовое воздействие на рабочие лопатки. В результате чего они вращаются вместе с диском и валом 1, установленным в опорных подшипниках 4.
Комплект, состоящий из сопл и рабочих лопаток, в которых совершается процесс расширения пара, называется ступенью давления турбины. Простейшие турбины, имеющие лишь одну ступень, называются одноступенчатыми, в отличие от более сложных многоступенчатых турбин.
Тремя основными элементами, содержащимися в конструкции турбокомпрессора являются: центробежный компрессор, турбина и центральный корпус. Кинетическая энергия отработанных газов под воздействием турбины преобразуется во вращательное движение компрессора.
Также турбина соединяет турбинное колесо, помещённое в специальный корпус в форме улитки.
Поступая в улитку, отработавшие газы перемещаются по каналу и попадают на лопасти турбинного колеса. Вал, к которому приварено турбинное колесо, передаёт на колесо компрессора энергию, которая придаёт его вращению.
Лопасти турбинного колеса становятся проводниками отработавших газов, которые затем покидают турбину через отверстие в центре турбокомпрессора и выходят в выпускную систему.
От формы и размера турбины напрямую зависит производительность турбокомпрессора. Значительный прирост мощности наблюдается в турбинах большего размера, потому что они могут использовать большее давление отработавших газов. Однако в таких турбокомпрессорах, на низких оборотах, значительна вероятность возникновения турбоямы.
Правила эксплуатации
Чтобы в полной мере использовать ресурс турбины дизельного мотора и продлить ее срок службы, необходимо выполнять ряд условий:
- Регулярно менять масло в системе, чтобы не допустить попадания абразива в маслопровод и его засорения.
- Применять только качественное масло, имеющее сертификат, той марки, которая соответствует указанной в паспортных данных двигателя.
- Прогревать мотор перед началом движения и не давать холодному двигателю высоких нагрузок.
- Никогда резко не отключать движок, а после остановки автомобиля давать ему возможность поработать несколько секунд на холостых оборотах.
Устройство турбонаддува
Турбина двигателя, работающего на бензине, состоит из таких элементов:
- Корпус подшипников, размещающий в себе ротор с валом и кольцами с лопастями. Вращаясь, они перенаправляют воздух в цилиндры.
- Каналы, проходящие через весь корпус. Их функция заключается в доставке масла к вращающимся и трущимся друг о друга элементам, что способствует увеличению срока их службы.
- Подшипник скольжения, гарантирующий плавную работу ротора, смазываемого и охлаждаемого маслом.
- Корпус, по форме чем-то напоминающий улитку, защищающий составные элементы механизма от механических повреждений.
Недостатки
Сегодня имеются следующие способы решения проблемы инертности турбонаддува:
- битурбонаддув (двойной наддув);
- турбина с адаптивной геометрией;
- комбинированный наддув.
При двойном турбонаддуве применяются две небольшие турбины, которые в совокупности работают намного быстрее, чем одна с номинальным размером. Число цилиндров распределяется между этими турбинами поровну. Аналогом такой системы может быть применение нескольких компрессоров, которые приходят в движение на разных оборотах мотора, каждый в своем режиме.
Турбина с адаптивной геометрией способна изменять размер впускного канала и тем самым регулировать силу потока выхлопных газов, что также повышает эффективность работы системы.
Комбинированный наддув состоит из турбокомпрессора и механического нагнетателя. Нагнетатель создает нужное давление на малых оборотах, но как только обороты возрастают до определенной величины, в работу включается турброкомпрессор.
Высокая температура. Как уже было сказано, сжатие воздуха влечет за собой его нагрев, что отражается на работе мотора не самым лучшим образом. Поэтому зачастую приходится подключать дополнительное охлаждение, и на это уходит часть энергии.
Однако несмотря на перечисленные недостатки, турбонаддув – это отличное средство для повышения мощности и эффективности ДВС, а также его экономичности. Кроме того, многолетний опыт специалистов показывает, что варианты усовершенствования этой системы еще не исчерпаны.
Видео об особенностях и принципах работы турбонаддува
Виды нагнетателей
Справедливости ради надо сказать, что первыми появились механические нагнетатели (kompressor, supercharger), которые приводятся в действие механической энергией вырабатываемой двигателем.
Различают несколько типов механических нагнетателей:
— центробежные, наиболее похожие на турбонаддув, поскольку воздух засасывается центробежной крыльчаткой;
— нагнетатели типа «Рутс»(Roots), в котором воздух нагнетается двумя роторами, как в маслонасосе;
— винтовые нагнетатели (Lysholm), по принципу похожие на Roots, но вместо двух роторов с лопастями применены винтовые роторы;
Компрессор Рутса
Компрессор Лисхольм
Центробежный компрессор
Плюсы механических нагнетателей:
— начинают работать сразу, как только начинает работать двигатель — нет турбоямы;
— прямая связь с оборотами двигателя — мгновенный отклик на нажатие педали газа;
— отличная тяга на «низах»;
Минусы механических нагнетателей:
— весьма существенно отнимают мощность у мотора (до 20%);
Есть и «электрический наддув» (электрокомпрессор), когда приводом компрессора служит электродвигатель. Но как правило такие нагнетатели устанавливаются не автономно, а в паре с турбонагнетателем.
Электрический нагнетатель
Плюсы электрических нагнетателей:
— можно настроить программу оборотов под любой режим работы ДВС — нет «провалов»;
Минусы электрических нагнетателей:
— для обеспечения требуемого потока воздуха необходим мощный электродвигатель, который потребляет много энергии;
Поскольку и у механических и у электрических нагнетателей есть один, но существенный минус — они требуют много дополнительной энергии для работы, то наибольшего распространения получили турбонагнетатели с приводом от выхлопных газов (турбокомпрессоры), которые такого недостатка лишены.
Турбокомпрессор приводится в движение отработанными газами, которые все равно «выбрасываются» наружу.
Турбокомпрессор в разрезе:
Плюсы турбокомпрессоров:
— нет потери мощности ДВС;
Минусы турбокомпрессоров:
— задержка увеличения мощности двигателя при резком нажатии на педаль газа — турбояма;
— резкое увеличение давления наддува после преодоления турбоямы — турбоподхват.
— воздух в турбокомпрессоре сильно нагревается, для его дальнейшего использования необходимо дополнительное охлаждение;
— требуется более качественное масло и более частая его замена;
Использование двух турбокомпрессоров и других турбо деталей
На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.
Когда воздух сжимается, он нагревается, а при нагревании воздух расширяется. Поэтому повышение давления от турбокомпрессора происходит в результате нагревания воздуха до его впуска в двигатель. Для того, чтобы увеличить мощность двигателя, необходимо впустить в цилиндр как можно больше молекул воздуха, при этом не обязательно сжимать воздух сильнее.
Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя. При впуске воздух проходит через герметичный канал в охладитель, при этом более холодный воздух подается снаружи по ребрам при помощи вентиляторов охлаждения двигателя.
Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель. Это значит, что если турбокомпрессор сжимает воздух под давлением 7 фунт/дюйм2 (0,5 бар), охладитель осуществит подачу охлажденного воздуха под давлением 7 фунт/дюйм2 (0,5 бар), который является более плотним и содержит больше молекул, чет теплый воздух.
Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.
В старых автомобилях с карбюраторами автоматически увеличивается подачу топлива в соответствии с увеличением подачи воздуха. В современных автомобилях происходит то же самое. Система впрыска топлива ориентируется на данные датчика кислорода в выхлопе для определения необходимого соотношения топлива и воздуха, так что система автоматически увеличивает подачу топлива при установленном турбокомпрессоре.
При установке мощного турбокомпрессора на двигатель с впрыском топлива, система может не обеспечить необходимое количество топлива — либо программное обеспечение контроллера не допустит, либо инжекторы и насос не смогут осуществить необходимую подачу. В этом случае необходимо осуществлять уже другие модификации для максимального использования преимуществ турбокомпрессора.
Ось турбокомпрессора
Ось является центральной частью турбонагнетателя и закреплена внутри корпуса на подшипниках скольжения. Смазка оси реализована при помощи подачи моторного масла из системы смазки двигателя. С обеих сторон устанавливаются специальные уплотнительные кольца и прокладки.
Данные элементы препятствуют обильным утечкам масла, чтобы смазка не попадала в область нахождения компрессора и турбины. Сами масляные уплотнения не обеспечивают полной герметичности. Данные решения являются уплотнителями, которые функционируют благодаря разнице давлений, которые возникают в процессе работы турбокомпрессора.
Также уплотнения минимизируют прорыв воздуха из компрессора и газов из турбины в корпус оси. Стоит отметить, что полностью исключить попадание выхлопа и сжатого компрессором воздуха не удается. Излишки удаляются по сливному маслопроводу вместе с маслом и оказываются в картере дизельного двигателя.
Принцип работы турбонаддува
Принцип работы турбонаддува достаточно прост. Выхлопные газы, которые выбрасывает двигатель, попадают на турбину и придают ей вращение. Турбина, в свою очередь, передаёт крутящий момент компрессору, он засасывает воздух и сжимает его. После этого сжатый воздух направляется в цилиндры двигателя. Опционально в эту схему вносится промежуточный охладитель воздуха — интеркулер. Он снижает температуру сжатого компрессором воздуха, соответственно уменьшая его объём. Это избавляет от неприятных эффектов вроде детонации, и повышает общую эффективность системы.
Смысл закачивания дополнительного воздуха становится ясен, если вспомнить принцип работы двигателя внутреннего сгорания. В его цилиндрах сгорает топливо-воздушная смесь, этот процесс толкает поршень, который проворачивает коленвал
Но, для эффективного сгорания смеси важно соблюдать правильное соотношение топлива и воздуха, поэтому нельзя повысить мощность просто добавив в смесь больше топлива. Вместе с увеличением количества топлива нужно увеличивать и количество воздуха
Это можно сделать увеличив объём цилиндра, чтобы в него помещалось побольше воздуха. Но можно пойти другим путём — повысить плотность воздуха, загоняемого в цилиндры. Тогда с той же единицы рабочего объёма двигателя можно снимать ощутимо большую мощность. Хороший пример — спорткары, где каждый литр объёма может выдавать более 150 л.с. Конечно, помимо турбонаддува там используют ещё массу ухищрений. Но вполне реально получить 105-115 л.с. на литр с помощью одного только турбирования.
4 Принцип работы турбонаддува (карбюраторный и дизельный двигатель)
- отработавшие газы поступают на турбинное колесо и вращают его за счет своей энергии;
- компрессорное колесо также получает вращение (через вал ротора от турбинного колеса), сжимает воздух, после чего отправляет его в описываемую нами систему;
- в интеркулере происходит охлаждение сжатого воздуха, который затем идет в цилиндры.
Как видим, турбонаддув имеет вполне понятный принцип работы, обеспечивает большую эффективность работы двигателя транспортного средства, чего, в сущности, и желают многие автолюбители. К его недостаткам относят лишь два явления:
- «турбояма»: задержка повышения мощности мотора ТС при нажатии (резком) на газ;
- «турбоподхват»: повышение давления после указанной выше «турбоямы».
Конструктивные особенности
Несмотря на то, что турбонаддувные системы у различных производителей имеют свои отличия, существует и ряд общих для всех конструкций узлов и агрегатов.
В частности, любая турбина имеет воздухозаборник, установленный непосредственно за ним воздушный фильтр, заслонку дросселя, сам турбокомпрессор, интеркулер, а также впускной коллектор. Элементы системы соединяются между собой шлангами и патрубками, выполненными из прочных износостойких материалов.
Как наверняка заметили читатели, знакомые с конструкцией автомобиля, существенным отличием турбонаддува от традиционной системы впуска является наличие интеркулера, турбокомпрессора, а также конструктивных элементов, предназначенных для управления наддувом.
Турбокомпрессор или, как его еще называют, турбонагнетатель, представляет собой основной элемент турбонаддува. Именно он отвечает за увеличение давления воздуха во впускном тракте двигателя.
Конструктивно турбокомпрессор состоит из пары колес – турбинного и компрессорного, которые размещаются на роторном валу. При этом каждое из этих колес имеет собственные подшипники и заключено в отдельный прочный корпус.
Что такое турбояма или турболаг
Принцип работы турбонаддува заключается в том, что двигатель «разгоняет» себя за счёт своей же работы. Эта особенность вызывает появление такой проблемы как турбояма или турболаг. Она проявляется в виде провала мощности, который появляется после резкого нажатия на педаль газа.
На заре турбированных моторов доходило до смешного — слишком резко и сильно нажав на педаль «газа», можно было полностью заглушить его. Сейчас сложная механическая и электронная начинка не даст этому произойти, но эффект турбоямы с неприятным провалом мощности всё равно остаётся. Особенно этим страдают дешевыё турбо-системы или неправильно установленные и настроенные.
Чтобы сгладить турболаг, используют хитрые электронные системы упреждающего наращивания оборотов. Они регистрируют резкие нажатия на педаль акселератора и раскручивают компрессор электроприводами, не дожидаясь, когда «проснётся» турбина. Цена таких решений, как правило, немаленькая, поэтому они встречаются в осномном только на спортивных авто.
Паровая турбина
Принцип работы ее немного иной. Пар, который образуется в котле, под давлением попадает на крыльчатку турбины. Последняя совершает обороты, тем самым, вырабатывая механическую энергию. Обычно такая турбина соединена с генератором и применяется на электростанциях. Благодаря механической энергии, генератор производит электричество. Мощность таких агрегатов может достигать 1000 МВт.
Однако данный показатель существенно зависит от перепада давления пара на входе и выходе. Также подобные турбины применяются для привода питательного насоса, на кораблях и судах с ядерной установкой. Что касается военных кораблей, здесь применяется газовая турбина. Принцип работы ее заключается в следующем. Газ поступает через сопловой аппарат компрессора в область низкого давления. При этом он расширяется и ускоряется. Затем поток газа двигает лопатки турбины. Последние передают усилия на вал через диски. Таким образом создается полезный крутящий момент.
Преимущества турбонаддува
В техническом отношении этот процесс не представляет ничего сложного. Нагнетатель представляет собой устройство, состоящее из двух колес – компрессорного и турбинного. Турбинное колесо захватывает выхлопные газы, приводящие его в движение. В результате начинает вращаться и компрессорное колесо, которое и служит для сжатия воздуха.
Компрессор в обязательном порядке контактирует с системой охлаждения, потому что в процессе действия его температура поднимается довольно высоко. Сила наддува регулируется с помощью перепускного клапана. В случае необходимости он может переводить часть выхлопа мимо турбины, чтобы понизить внутрисистемное давление.
Повышение мощности двигателя без увеличения его объема и массы. Технология турбонаддува позволяет повышать мощность двигателя без увеличения объема цилиндров и их количества. В результате легкие и небольшие по размеру моторы приобретают отличные характеристики, и, кроме этого, сокращается общая масса автомобиля, уменьшаются тормозной путь и время разгона.
Экономичность. Расход топлива у двигателей, оснащенных системой турбонаддува, в разы меньше, нежели расход топлива у мотора такой же мощности с простым атмосферным нагнетанием воздуха. Это объясняется тем, что в цилиндрах с турбонаддувом на один ход поршня тратится намного меньше топлива за счет полного его сгорания. То есть, бедная смесь компенсируется дополнительным напором воздуха, и в результате мощность увеличивается.
1 Турбонаддув в автомобиле – общая информация
На данный момент система турбонаддува признается специалистами высокоэффективной системой ощутимого увеличения мощности двигателя авто, которая не требует повышать объем цилиндров и частоту вращения коленвала. При этом двигатель с турбонаддувом гарантирует:
- уменьшение токсичности отработавших газов, которое достигается благодаря тому, что горючее сгорает полностью;
- экономию топлива (если рассчитывать расход горючего на единицу мощности).
- сравнительно малой частоты вращения коленвала;
- повышенного уровня сжатия двигателя машины.
Что касается бензинового авто, можно сказать, что установка турбонаддува на нем может привести к детонации. Это обусловлено повышенной (около 1000 градусов) температурой отработавших газов и существенным повышением частоты вращения мотора.
Что такое турбонаддув в автомобиле
Турбонаддув это специальная система, которая закачивает (наддувает) дополнительный воздух в цилиндры двигателя. Такая система используется не только в автомобильных двигателях, но и в авиационных, тепловозных, корабельных, и многих других. Широкое распространение турбонаддува вызвано тем, что это очень простой и дешёвый способ повышения мощности двигателя. Турбировать можно почти любой автомобильный двигатель, даже если это изначально не предусмотрено конструкцией.
Устройство турбонаддува относительно простое:
- турбокомпрессор;
- охладитель воздуха;
- набор патрубков;
- выпускной коллектор;
- ряд датчиков и клапанов.
Полный комплект не занимает много места, его установка не требует серьезной переработки силового агрегата. Поэтому поставить турбонаддув на свою машину может любой желающий. Цены на турбосистемы сильно разнятся, в зависимости от мощности, эффективности, фирмы-производителя.
Кратко о турбокомпрессоре и зачем он нужен
Правильное название для современной турбины – «турбокомпрессор», поскольку это действительно компрессор, приводимый в движение турбиной. Представляет собой механизм, который состоит из двух шлифовальных машин (турбин), прикрепленных к одной оси. Одна из сторон вала находится в контакте с выхлопными газами, которые при нагревании и при определенном давлении двигателя вращают турбину так же, как игрушечная ветряная мельница, когда воздух попадает на её лопасти. Турбина на другой стороне вала находится в канале воздуха, который поступает в двигатель, и, поворачиваясь в солидарности с каналом на стороне выпуска, она проталкивает поглощаемый воздух, создавая давление.
Как работает турбокомпрессор
Поскольку повышение давления поглощаемого воздуха также увеличивает энергию выхлопных газов, это будет опасно для двигателя, поскольку каждый раз он будет генерировать больше давления неограниченным образом, пока не «перепрыгнет» через воздух. Чтобы этого не произошло, в турбокомпрессоре установлен выпускной клапан, который выбрасывает в атмосферу часть давления в выхлопе. В дополнение к этому клапану, во впускном коллекторе установлен ещё один, который открывается внезапно, чтобы мгновенно понизить давление во впускном коллекторе.
Точно так же, как насос накачивает колеса велосипеда, при прохождении через турбину поглощаемый воздух нагревается, потому что турбина горячая (сторона, которая находится в контакте с выхлопными газами, превышает температуру 1000 градусов по Цельсию), и газ при сжатии становится горячим. Поскольку горячий воздух имеет меньшую плотность кислорода и также вызывает самодетонацию, перед смешиванием его с топливом и помещением его в цилиндры он охлаждается в радиаторе, называемым промежуточным охладителем.
Недостатки турбированных двигателей
Одним из важных недостатков турбин является их дороговизна обслуживания. Турбины очень чувствительны к качеству масла и дизелю либо бензину. Для увеличения срока эксплуатации необходимо использовать только качественные синтетические масла и топливо, соответствующей марки без посторонних примесей. Помимо износа самой турбины из-за повышенных нагрузок страдает и мотор, что приводит к уменьшению срока его эксплуатации. Ещё одним недостатком турбонаддува выступает сложность ремонта.
Без привлечения опытных специалистов и профессионального оборудования выполнить ремонтные работы практически невозможно.
Об истории изобретения и внедрения турбонаддува
Итак, идея «пустить в дело» энергию отработанных выхлопных газов появилась уже вскоре после изобретения и успешных опытов применения двигателей внутреннего сгорания. Немецкие инженеры и первопроходцы автомобиле- и тракторостроения, во главе с Дизелем и Даймлером, провели первые опыты по повышению мощности двигателя и снижению расхода топлива с помощью нагнетания сжатого воздуха от выхлопов.
Готдиб Даймлер выпускал вот такие автомобили, а уже задумывался о внедрении системы турбонаддува
Но первым, кто построил первый эффективно работающий турбокомпрессор, стали не они, а другой инженер – Альфред Бюхи. В 1911 году он получил патент на своё изобретение. Первые турбины были таковы, что использовать их было возможно и целесообразно только на крупных двигателях (например, судовых).
Далее турбокомпрессоры начали использоваться в авиационной промышленности. Начиная с 30-х годов ХХ века, в Соединённых Штатах регулярно запускались в «серию» военные самолёты (как истребители, так и бомбардировщики), бензиновые двигатели которых были оснащены турбонагнетателями. А первая в истории грузовая автомашина с турбированным дизельным мотором была сделана в 1938 году.
В 60-е годы корпорация «Дженерал Моторс» выпустила первые легковые «Шевроле» и «Олдсмобили» с бензиновыми карбюраторными двигателями, оснащёнными турбонаддувом. Надежность тех турбин была невелика, и они быстро исчезли с рынка.
Oldsmobile Jetfire 1962 года – первый серийный автомобиль с турбонаддувом
Мода на турбированные моторы вернулась на рубеже 70-х/80-х, когда турбонаддув начали широко использовать в создании спортивных и гоночных автомобилей. Приставка «турбо» стала чрезвычайно популярной и превратилась в своеобразный лейбл. В голливудских фильмах тех лет супергерои нажимали на панелях своих суперкаров «магические» кнопки «турбо», и машина уносилась вдаль. В реальной же действительности турбокомпрессоры тех лет ощутимо «тормозили», выдавая существенную задержку реакции. И, кстати, не только не способствовали экономии топлива, а наоборот, увеличивали его расход.
Труженик советских полей – трактор К-701 «Кировец» с турбонаддувом
Первые действительно успешные попытки внедрения турбонаддува в производство автомобильных двигателей серийного производства осуществили в начале 80-х годов «SAAB» и «Mercedes». Этим передовым опытом не замедлили воспользоваться и другие мировые машиностроительные компании.
В Советском Союзе разработка и внедрение в «серию» турбированных двигателей была связана, прежде всего, с развитием производства тяжёлых промышленных и сельскохозяйственных тракторов – «ЧТЗ», «Кировец»; суперсамосвалов «БелАЗ» и т.п. мощной техники.
Почему в итоге турбины получили распространение именно на дизельных, а не бензиновых двигателях? Потому что дизельные моторы имеют гораздо большую степень сжатия воздуха, а их выхлопные газы – более низкую температуру. Соответственно, требования к жаропрочности турбины гораздо меньше, а её стоимость и эффективность использования – гораздо больше.
Увеличение числа оборотов коленчатого вала двигателя
Еще один возможный способ повышения производительности двигателя заключается в увеличении числа оборотов коленчатого вала. Это достигается путем увеличения количества ходов поршня за единицу времени. Но использование такого способа имеет жесткие ограничения, которые обусловлены техническими возможностями двигателя. Кроме этого, такая модернизация приводит к падению эффективности работы силового агрегата из-за потерь при впуске и других операциях.
Турбонаддув
В двух предыдущих способах двигатель использует воздух, который поступает благодаря собственному нагнетанию. При использовании турбокомпрессора в цилиндр поступает тот же объем воздуха но с предварительным его сжатием. Это дает возможность поступлению большего количества воздуха в цилиндр, благодаря чему появляется возможность сжигания большего объема топлива. При использовании такой технологии, мощность двигателя возрастает по отношению к количеству потребляемого топлива и объему двигателя.
Охлаждение воздуха
В процессе компрессии воздух может нагреваться вплоть до 180 С. Однако воздух имеет свойство увеличения плотности при охлаждении, что дает возможность значительно увеличить объем воздуха, попадающего в цилиндр. Кроме этого, увеличение плотности воздуха существенно снижает расход топлива и количество выбросов продуктов сгорания.
Также существует два разных типа турбонаддува: турбокомпрессор, основанный на использовании энергии выхлопных газов и турбонагнетатель с механическим приводом.
Турбонагнетатель с механическим приводом
В случае использования такого типа компрессии, воздух сжимается благодаря специальному компрессору, который работает от привода двигателя. Но такой метод имеет один большой недостаток. Все дело в том, что при использовании механического турбокомпрессора часть мощность двигателя уходит на обеспечение работы самого компрессора, по этому двигатель, оборудован таким нагнетателем, имеет больший расход топлива чем обычный двигатель такой же мощности.
Турбокомпрессор основанный на использовании энергии выхлопных газов
Такой метод основан на использовании энергии выхлопных газов, которая направлена на привод турбины. При использовании такого способа отсутствует механическое соединение с двигателем, благодаря чему потери мощности не происходит.
Основные преимущества двигателей с турбонаддувом
1) Турбодвигатель имеет меньшее показатели по расходу топлива нежели двигатель без турбины той же мощности и при прочих равных условиях.
2) Силовой агрегат с с турбонаддувом имеет заметно лучшие показатели соотношения веса двигателя к развиваемой им мощности.
3) Использование турбокомпрессора открывает новые возможности по оптимизации других параметров и характеристик двигателя, а также улучшения крутящего момента, что позволит избежать очень часто переключения передач при езде в пробках или гористой местности.
4) Турбодвигатели работают тише чем агрегаты такой же мощности без турбонаддува.
Турбонаддув TDI: турбина с изменяемой геометрией
От эффективности работы турбоанддува TDI в значительной мере зависит не только динамика, но и экономичность наряду с экологичностью. Правильное наддува воздуха должно быть реализовано в максимально широком диапазоне. По этой причине на моторы TDI ставится турбокомпрессор с изменяемой геометрией турбины.
Ведущие производители турбин в мире используют следующие названия:
- Турбина VGT (от англ. Variable Geometry Turbocharger, что означает турбокомпрессор с изменяемой геометрией). Производится BorgWarner.
- Турбокомпрессор для дизеля VNT (от англ. Variable Nozzle Turbine, что означает турбина с переменным соплом). Это название использует фирма Garrett.
Турбонагнетатель с изменяемой геометрией отличается от обычной турбины тем, что имеет возможность регулировки как направления, так и величины потока отработавших газов. Данная особенность позволяет добиться наиболее подходящей частоты вращения турбины применительно к конкретному режиму работы ДВС. Производительность компрессора в этом случае сильно повышается.
Например, турбина VNT имеет в основе конструкции специальные направляющие лопатки. Дополнительно имеется механизм управления, а также отмечено наличие вакуумного привода. Указанные лопатки турбины производят поворот на необходимый угол вокруг свой оси, тем самым способны менять скорость и направление потока выхлопа. Это происходит благодаря изменению величины сечения канала.
Механизм управления отвечает за поворот лопаток. Конструктивно механизм имеет кольцо и рычаг. На рычаг оказывает воздействие вакуумный привод, который управляет работой механизма посредством специальной тяги. Вакуумный привод управляется отдельным клапаном, который ограничивает давление наддува. Клапан является составным элементом электронной системы управления ДВС и срабатывает зависимо от показателей величины давления наддува. Эта величина измеряется отдельными датчиками:
- температурный датчик, который измеряет температуру воздуха на впуске;
- датчик давления наддува;
Другими словами, турбонаддув на TDI работает так, чтобы давление наддувочного воздуха всегда было оптимальным на разных оборотах двигателя. Фактически, турбина дозирует энергию потока отработавших газов.
- Как известно, на низких оборотах двигателя скорость потока (энергия) выхлопа является достаточно низкой. В таком режиме направляющие лопатки обычно закрыты, чем достигается минимальное сечение в канале. В результате прохождения через такой канал даже небольшое количество газов более эффективно крутит турбину, заставляя компрессорное колесо вращаться заметно быстрее. Получается, турбокомпрессор обеспечивает большую производительность на низких оборотах.
- Если водитель резко нажимает на газ, тогда у обычной турбины возникает эффект так называемой «турбоямы». Под турбоямой следует понимать задержку отклика на нажатие педали газа, то есть не моментальный прирост мощности, а подхват после небольшой паузы. Такая особенность обусловлена инерционностью системы турбонаддува, в результате чего потока газов оказывается недостаточно в момент резкого увеличения оборотов коленвала. В турбинах с изменяемой геометрией направляющие лопатки осуществляют свой поворот с определенной задержкой, что позволяет поддерживать нужное давление наддува и практически избавиться от турбоямы.
- При езде на высоких и приближенных к максимальным оборотах двигателя отработавшие газы имеют максимум энергии. Чтобы предотвратить создание избыточного давления наддува лопатки в турбинах с изменяемой геометрией поворачиваются так, чтобы мощный поток газов двигался по широкому каналу с наибольшим поперечным сечением.
Относительно малый ресурс турбокомпрессора связан с тем, что на TDI ставятся исключительно турбины с изменяемой геометрией. Турбокомпрессор во время работы двигателя раскручивается до 200 тыс. об/мин и постоянно взаимодействует с потоком разогретых до 1000 градусов по Цельсию выхлопных газов. Такие температурные и механические нагрузки, а также индивидуальные особенности конструкции указанных турбин сравнительно быстро приводят к необходимости ремонта или замены турбокомпрессора.
Турбонаддув
Турбонаддув – это система, позволяющая увеличить максимальную мощность двигателя, используя для этого энергию выхлопных газов.
Первые турбины хотя и давали весьма ощутимую прибавку в мощности, но из-за своей громоздкости во много раз увеличивали и без того немаленький вес двигателей автомобилей тех лет.
Конструкторы со временем усовершенствовали технологию, сделав элементы системы более легковесными, одновременно повысив ее производительность. Но одним из существенных недостатков оставался повышенный расход топлива.
Конструкторам удалось решить одну из главных проблем турбодвигателя – расход топлива, ведь, как известно, дизельный агрегат менее «прожорливый», чем бензиновый.
Еще один несомненный плюс дизельного топлива – его отработанные газы имеют температуру ниже, чем бензиновые, стало быть, основные агрегаты системы турбонаддува можно было производить из менее тяжеловесных и жаростойких материалов.